INTERCHANGE OPERATIONAL ANALYSIS REPORT

Interstate 10 at State Road 51 (US 129) Interchange
Suwannee County, Florida

Financial Project Identification: 443239-1-21-01

Prepared By:
Florida Department of Transportation
District Two
1109 South Marion Avenue
Lake City, Florida 32025

January 2022

PROFESSIONAL ENGINEER CERTIFICATION

I hereby certify that I am a registered professional engineer in the State of Florida practicing with the Florida Department of Transportation, and that I have supervised the preparation and approve the evaluation, findings, opinions, conclusions, and technical advice hereby reported for:

Project: I-10 at SR 51 Interchange Improvements
Location: I-10 at SR 51 Interchange, Suwannee County, Florida

Report: Interchange Operational Analysis Report
Financial Project ID No.: 443239-1-21-01

This report provides preliminary engineering analysis for the proposed improvements along SR 51. Any engineering analyses, documents, conclusions, or recommendations relied upon from other professional sources or provided by others are referenced accordingly in the following report.

Justin W. Garland, P.E.

P.E. \#88021

1109 South Marion Ave Lake City, Florida 32025

Executive Summary

The purpose of this study is to determine enhancements that improve operations at the l-10 at SR 51 (US 129) interchange. Improvements are aimed at increasing the efficiency of the interchanges' ramp terminal intersection operations and improving safety at the interchange. The primary need of the project is to improve future traffic conditions thereby improving safety at the interchange. The interchange of I-10 at SR 51 (US 129) is an unsignalized diamond interchange providing full access. It is an important component of the Strategic Intermodal System (SIS) providing access to the City of Live Oak.

If no improvements are made to the interchange, traffic operations and safety within the area will continue to deteriorate as traffic volumes increase.

A Methodology Letter of Understanding (MLOU) was not prepared for this project, however, the methodology is laid out in this report and briefly described hereafter. The primary basis for traffic projections in this Interchange Operational Analysis Report (IOAR) are the weekday turning movement counts collected on November 6, 2019 during the morning and evening peak hours and the FDOT Traffic Online (FTO) 2019 data. The analysis years for this study include Existing Year 2020, Opening Year 2025 and Design Year 2045. The operational analysis for this study was performed using the Highway Capacity Software (HCS 7) and Synchro 11 software.

Two alternatives were evaluated to address the purpose and needs identified for this project and presented in this IOAR. These include the No-Build Alternative and the Build Alternative. Transportation Systems Management and Operations (TSM\&O) improvements were considered and include implementation of noncapacity improvements to improve traffic flow within the project area. The Build Alternative developed for this IOAR incorporates TSM\&O improvements. The alternatives analyzed include:

- No-Build Alternative - This alternative includes the existing interchange configuration with future traffic.
- Build Alternative - This alternative includes signalizing the I-10 at SR 51 (US 129) interchange ramp terminals and enhance each off ramp to operate with dual left turns, signalizing the Busy Bee northern entrance, increasing the storage length of the SR 51 (US 129) southbound left turn onto the I-10 Eastbound Ramps, increasing the storage length of the SR 51 (US 129) northbound left turn onto the I10 Westbound Ramps, move the SR 51 (US 129) southbound left turn into the Busy Bee northern entrance to the southern entrance, remove the direct right into the Busy Bee from the l-10 Westbound off ramp to the Busy Bee Southern Driveway, and widen SR 51 (US 129) to the north of the Busy Bee adding bicycle lanes and sidewalks.

As part of this study, an existing crash analysis was performed. The data provided from FDOT Crash Analysis Reporting System (CARS Online) shows angle crashes are the most prominent crash types within the project
area on SR 51 (US 129). The proposed Build Alternative shows improved traffic operations and safety within the project area due to reduction in congestion and improved geometric design.

Based on the evaluations of the No-Build and Build Alternatives, the recommended alternative for approval in this study is the Build Alternative. The recommended alternative will incorporate viable TSM\&O improvements and will be developed further in the next phase.

This IOAR has been developed in accordance with FDOT Policy No. 000-525-015: Approval of New or Modified Access to Limited Access Highways on the Strategic Highway System (SHS), FDOT Procedure No. 525-030-160: New or Modified Interchanges, 2020 Interchange Access Request User's Guide (IARUG), 2020 IARUG Safety Analysis Guidance, and the 2019 FDOT Traffic Forecasting Handbook (Procedure No. 525-030-120).

E. 1 Compliance with FHWA General Requirements

The following requirements serve as the primary decision criteria used in approval of interchange modification projects. Responses to each of the FHWA two policy points are provided to show that the proposed modification for the I-10 at SR 51 (US 129) interchange is viable based on the operational and safety analysis performed to date.

E.1.1 FHWA Policy Point 1

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

An in-depth operational and safety analysis was conducted to study the impacts of the proposed improvements at the I-10 and SR 51 (US 129) interchange. Several performance measures were used to compare the operations of the existing system under No-Build and Build conditions. Key measures included freeway densities, intersection delays, LOS, $95^{\text {th }}$ percentile queue lengths and safety under existing and proposed conditions.

From an operational perspective in the Design Year 2045 under the No-Build Alternative, operational and safety deficiencies will exist. The intersections along SR 51 (US 129) at the Eastbound and Westbound I-10 Ramps will operate at LOS E or worse in the AM and PM peak hours. The Busy Bee Northern Entrance will operate at LOS D in the AM peak hour and LOS F in the PM peak hour. These deficiencies are attributed to the insufficient capacity and operations at all three intersections.

The Build Alternative for this study performs substantially better than the No-Build Alternative for all future years. The proposed interchange improvements provide additional capacity for the heavy left turn volumes from the l-10 off ramp, as well as signalize the eastbound and westbound ramp terminal intersections with SR 51 (US 129), and the Busy Bee North Entrance intersection with SR 51 (US 129). By implementing these improvements, the study intersection at the I-10 at SR 51 (US 129) interchange will operate at acceptable LOS D or better in both AM and PM Peak hour. SR 51 (US 129) left turns onto the Interchange Ramps will also benefit from the signalization of the intersection because they will have a dedicate left turn signal to remove driver uncertainty.

A safety analysis was performed for the study area using the most recent 5 year crash history, from 2014 to 2018. The analysis indicated a total of 118 crashes occurred within the project area, of which 73 of the crashes occurred on the project segment of SR 51 (US 129). The predominant crash type reported was angle collisions.

With the improved operations under the Build Alternative, it is anticipated to enhance safety within the project area. A CMF safety analysis was performed for the study area where improvements are to be implemented. Based on the safety analysis, it is predicted that a reduction of 2.126 crashes per year will occur due to the recommended improvements.

Overall, the Build Alternative provides significantly better traffic operations and enhances safety when compared to the No-Build Alternative.

In conclusion, the comparison of the No-Build and Build Alternatives show the proposed interchange improvements provide enhanced operation and safety conditions. The proposed modifications in the Build Alternative are not anticipated to have a negative impact on operations or safety of the $\mathrm{I}-10$ mainline or any adjacent interchanges.

E.1.2 FHWA Policy Point 2

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the
missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

The proposed improvements to the I-10 at SR 51 (US 129) interchange and adjacent intersections will provide full access and cater to all traffic movements from SR 51 (US 129) to and from I-10. The proposed modifications are designed to meet current standards for federal-aid projects on the interstate system and conform to American Association of State Highway and Transportation Official (AASHTO) and the FDOT design.

Table of Contents

EXECUTIVE SUMMARY i

1. INTRODUCTION 1
1.1 Background 1
1.2 Purpose and Need 1
1.3 Project Location 2
1.4 Access for Special Events 2
2. METHODOLOGY 4
2.1 Overview 4
2.2 Analysis Years 4
2.3 Area of Influence 4
2.4 Data Collection 5
2.5 Base Traffic Data and Traffic Volumes Development 5
2.6 LOS Criteria 12
2.7 Analysis Procedures 12
2.8 Alternatives Considered 12
3. EXISTING CONDITIONS 13
3.1 Existing Land Use 13
3.2 Existing Transportation Network 15
3.3 Field Observations 15
3.4 Existing Operational Performance 17
3.5 Existing Crash Data Summary 19
4. NEED 25
4.1 Operational Performance 25
4.2 Transportation Capacity 25
4.3 Safety 26
4.4 Emergency Evacuation 26
4.5 Special Events 26
5. NO-BUILD CONDITIONS 27
5.1 No-Build Operational Analysis 27
6. ALTERNATIVES 33
6.1 No-Build Alternative 33
6.2 Transportation Systems Management and Operations Improvements 33
6.3 Build Alternative 33
6.4 Build Alternative Design Traffic. 36
7. EVALUATION OF ALTERNATIVES 39
7.1 Conformance with Local, Regional and State Transportation Plans 39
7.2 Compliance with Policies and Engineering Standards 39
7.3 HCM Based Individual Element Build Operational Analysis 39
7.4 Build Alternative Operational Analysis 39
7.5 Build Alternative Safety Analysis. 43
7.6 Alternatives Comparison 45
7.7 Recommended Alternative 46
7.8 Conceptual Signing Plan 46
7.9 Design Exceptions and Variations 46
8. JUSTIFICATION 47
8.1 Compliance with FHWA General Requirements 47
9. CONCEPTUAL FUNDING PLAN/CONSTRUCTION SCHEDULE 50
LIST OF APPENDICES 51

List of Tables

Table 2-1: Summary of Traffic Factors... 8
Table 3-1: Functional Classification of Area Roadways ... 15
Table 3-2: Existing Year 2020 HCS Analysis Summary ... 17
Table 3-3: Existing Year 2020 Intersection Analysis Summary .. 18
Table 3-4: Existing Year 2020 Queue Analysis ... 19
Table 3-5: I-10 Crash Severity Summary (2014-2018) ... 21
Table 3-6: SR 51 (US 129) Crash Severity Summary (2014-2018).. 22
Table 3-7: Interchange Ramps Crash Severity Summary (2014-2018) .. 23
Table 3-8: Existing Crash Summary (2014-2018) ... 24
Table 3-9: Existing Intersection Crash Summary (2014-2018).. 24
Table 4-1: Forecasted Growth in Traffic Volumes ... 25
Table 5-1: Opening Year 2025 No-Build HCS Analysis Summary.. 28
Table 5-2: Opening Year 2025 No-Build Intersection Analysis Summary 29
Table 5-3: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Opening Year 2025 No-Build Alternative 29
Table 5-4: Design Year 2045 No-Build HCS Analysis Summary 30
Table 5-5: Design Year 2045 No-Build Intersection Analysis Summary 31
Table 5-6: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Design Year 2045 No-Build Alternative 32
Table 7-1: Opening Year 2025 Build Alternative Intersection Analysis Summary 40
Table 7-2: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Opening Year 2025 Build Alternative 41
Table 7-3: Design Year 2045 Build Alternative Intersection Analysis Summary 42
Table 7-4: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Design Year 2045 Build Alternative 43
Table 7-5: Crash Modification Factor (CMF) Summary Table 43
Table 7-6: Build Alternative Crash Reduction 44
Table 7-7: Build Alternative Estimate 46
List of Figures
Figure 1-1: Project Location Map 3
Figure 2-1: AADT Existing Year (2020), Opening Year (2025), and Design Year (2045) 7
Figure 2-2: Existing Year (2020) Peak Hour Volumes 9
Figure 2-3: Opening Year (2025) Peak Hour Volumes 10
Figure 2-4: Design Year (2045) Peak Hour Volumes 11
Figure 3-1: Land Use Map 14
Figure 3-2: Existing Lane Configurations. 16
Figure 3-3: I-10 Crash Types (2014-2018) 21
Figure 3-4: SR 51 Crash Types (2014-2018) 22
Figure 3-5: Interchange Ramps Crash Types (2014-2018) 23
Figure 6-1: Build Alternative Lane Configuration 35
Figure 6-2: Build Alternative Opening Year (2025) Peak Hour Volumes 37
Figure 6-3: Build Alternative Opening Year (2045) Peak Hour Volumes 38
Figure 7-1: Crash Types at Intersections of Interest (2014-2018) 44

1. INTRODUCTION

The interchange of Interstate 10 (I-10) with State Road 51 (US 129) is located in Suwannee County, Florida. The interchange provides primary access for the City of Live Oak, located to the south of this interchange. The Florida Department of Transportation (FDOT) District Two is conducting an interchange study to evaluate improvements for the interchange of I-10 and SR 51 (US 129). This Interchange Operational Analysis Report (IOAR) evaluated alternatives to improve traffic operations and safety at this critical interchange in Suwannee County. The existing I-10 and SR 51 (US 129) interchange is an unsignalized diamond interchange configuration. SR 51 (US 129) is functionally classified as a four-lane Rural Minor Arterial and I-10 is functionally classified as a Rural Principal Arterial Interstate. The context classifications are as follows: SR 51 (US 129) is classified as a C3C-Suburban Commercial Facility south of I-10 and C2-Rural Facility north of I-10.

1.1 Background

The interchange of I-10 at SR 51 (US 129) is an important component of the State's Strategic Intermodal System (SIS) and provides access to the City of Live Oak. This IOAR proposes Ultimate Improvements to enhance the movement of people and goods at this Interchange. SR 51 is currently a divided four-lane roadway north and south of I-10 transitioning to an undivided two-lane roadway approximately a half mile north of the interchange. l-10 is currently a divided four-lane roadway within the project limits.

The project is included in the State Transportation Improvement Program (STIP) and FDOT's 5-year Work Program.

This IOAR is seeking approval from FDOT's Chief Engineer and FDOT Central Office for the proposed improvements to the access point of I-10 at SR 51 (US 129) in Suwannee County. This IOAR has been developed in accordance with FDOT Policy No. 000-525-015: Approval of New or Modified Access to Limited Access Highways on the Strategic Highway System (SHS), FDOT Procedure No. 525-030-160: New or Modified Interchanges, 2020 Interchange Access Request User's Guide (IARUG), 2020 IARUG Safety Analysis Guidance, and the 2019 FDOT Traffic Forecasting Handbook (Procedure No. 525-030-120).

1.2 Purpose and Need

The purpose of this study is to improve interchange operations, reduce congestion, improve safety, and alleviate spillback onto I-10 during hurricane evacuation at this interchange location. Improvements are aimed at increasing the efficiency of the l-10 at SR 51 (US 129) interchange and SR 51 (US 129) arterial corridor.

The primary need of the project is to improve existing and future traffic operations thereby improving safety at the interchange. The interchange of I-10 at SR 51 (US 129) is a diamond interchange providing full access to SR 51 (US 129). It is an important component of the SIS providing access to the City of Live Oak. Currently, the westbound I-10 off-ramp and the eastbound I-10 off-ramp both terminate at stop-controlled intersections. During the Design Year (2045), this configuration does not provide efficient operations and results in traffic
backups, primarily at the off ramp left turns, during the AM and PM peak hours. Additionally, the ramp terminals experience crash rates higher than the statewide averages.

The available crash data collected from the FDOT Crash Analysis Reporting On-line (CAR On-line) for the years 2014 through 2018 reveal that a total of 118 crashes occurred in the project area, of which 36 (31\%) were angle crashes and 23 (19\%) were front to rear crashes. Most of the crashes (73 or 62%) of the total crashes occurred on the project segment of SR 51 (US 129), resulting in 49 injuries and one fatality.

If no operational and safety improvements are made within the interchange area, conditions will become progressively worse as traffic volumes continue to increase, thereby, deteriorating this interchange access.

1.3 Project Location

The subject interchange is in Suwannee County, along I-10 at Milepost (MP) 14.565. The I-10 at SR 51 (US 129) interchange is located between the interchanges of I-10 at SR 10 (US 90) to the west (MP 6.465) and I-10 at CR 137 to the east (MP 23.865). The SR 51 (US 129) interchange is located approximately 8.1 miles to the east of the SR 10 interchange and approximately 9.3 miles to the west of the CR 137 interchange. The project location and the study area are shown in Figure 1-1. The adjacent interchanges are not included within the area of influence as they are more than 5 miles from the study interchange and will not be impacted.

1.4 Access for Special Events

The I-10 at SR 51 (US 129) interchange provides primary access to the Spirit of the Suwannee Music Park located 5.6 miles north of the interchange on SR 51 (US 129). The Spirit of the Suwannee Music Park is an 800acre campground and music park located on the historic banks of the Suwannee River. The Park holds multiple multi-day concert music festivals throughout the year attracting up to 21,000 attendees. These events further strain the interchange at I-10 and SR 51 (US 129) with decreasing operations, increased congestion and thus deteriorating safety.

2. METHODOLOGY

2.1 Overview

The methodology used for travel demand forecasting and development of design hour traffic is consistent with the 2019 FDOT Project Traffic Forecasting Handbook. The primary basis for traffic projections were November 6, 2019 weekday turning movement counts (TMCs) collected during the morning and evening peak periods for the following study intersections:

- SR 51 at $68^{\text {th }}$ Terrace
- SR 51 at I-10 Eastbound Ramps
- SR 51 at I-10 Westbound Ramps
- SR 51 at Busy Bee South Entrance
- SR 51 at Busy Bee North Entrance and Exit

Twenty-Four hour hose counts were collected on November 6, 2019 for the following SR 51 (US 129) at I-10 interchange ramps:

- eastbound off ramp
- eastbound on ramp
- westbound off ramp
- westbound on ramp

In addition to the traffic counts, traffic volume data from Florida Traffic Online (FTO) was also obtained for I-10 mainline west and east of SR 51 (US 129), SR 51 (US 129) interchange ramps and SR 51 (US 129) roadway south and north of I-10. The aforementioned data was used to establish Existing Conditions 2020 traffic volumes, project Opening Year 2025 and Design Year 2045 traffic volumes.

2.2 Analysis Years

The following study years are established for this IOAR:

- Existing Year: 2020
- Opening Year: 2025
- Design Year: 2045

2.3 Area of Influence

The area of influence (AOI) for the IOAR includes the study interchange of I-10 at SR 51 (US 129) and SR 51 (US 129) corridor between $68^{\text {th }}$ Terrace and Busy Bee Entrance, located in Suwannee County. Along I-10, the nearest interchanges of SR 10 and CR 137 are 8.1 and 9.3 miles to the west and east, respectively. These interchanges are not included within the area of influence as they are more than 5 miles from the study interchange and will not be impacted.

The major study corridor is SR 51 (US 129):

- SR 51 (US 129) is a 4-lane divided Rural Minor Arterial south of I-10 and transitions to a 2-lane undivided Rural Minor Arterial approximately 860 feet north of I-10. The speed limit within the study limits to the north and south of $\mathrm{I}-10$ is 45 mph . However, north of $\mathrm{I}-10$ the speed limit transitions from 45 mph to 55 mph and then 60 mph , at approximately 1,800 and 2,800 feet north of $\mathrm{I}-10$, respectively.

The area of influence also includes signalized and stop controlled intersections along SR 51 (US 129). The intersections used for traffic operational analysis within the area of influence are listed below:

- Intersections
- SR 51 (US 129) at $68^{\text {th }}$ Terrace, signalized
- SR 51 (US 129) at Eastbound Interchange Ramps, stop controlled
- SR 51 (US 129) at Westbound Interchange Ramps, stop controlled
- SR 51 (US 129) at Busy Bee North Entrance and Exit, stop controlled

The area of influence is shown in Figure 1-1.

2.4 Data Collection

The analysis conducted for this IOAR is based on a combination of data that includes field traffic counts and additional data available from FDOT. The data sources within the project study area include:

- Traffic Forecasts based on November 6, 2019 traffic counts
- Existing Traffic Data from FTO
- Land Use Data from the Florida Geographic Data Library (FGDL)
- Crash data from the CAR On-line
- FDOT Straight Line Diagrams (SLD)
- Existing Signal timings from local agencies

Traffic in 2020 was affected by the Covid-19 Pandemic, however the traffic data for this project was collected in 2019, before the start of the Pandemic.

2.5 Base Traffic Data and Traffic Volumes Development

Existing Year (2020) was established using the November 6, 2019 traffic counts and traffic volumes from FTO obtained for I-10 mainline west and east of SR 51 (US 129), SR 51 (US 129) interchange ramps and SR 51 (US 129) roadway south and north of I-10.

As a result of the study interchange not being covered under a regional or district travel demand model, historical traffic growth trend analysis for the study area roadways and population growth for Suwannee County were established to develop Opening Year (2025) and Design Year (2045) traffic volumes. Based on the
comparison of above sources, a linear growth rate of 2.5% is recommended for estimating Existing Year (2020) and Opening Year (2025) design hour volumes. A linear growth rate of 2.0% is recommended for estimating Design Year (2045) volumes by applying this growth rate to Opening Year (2025) peak hour volumes.

Average Annual Daily Traffic (AADT) were developed using the following steps:

1. AADT volumes for l-10 mainline east and west of SR 51 (US 129) and SR 51 (US 129) ramps were obtained from FTO. Daily ramp volumes were also available from 2019 hose counts. Both FTO and ramp hose count data were reviewed to develop Existing Year (2020) AADT volumes using a 2.5% linear annual growth rate.
2. Opening Year (2025) AADT volumes were then developed from Existing Year (2020) AADT using a 2.5% linear annual growth rate.
3. Design Year (2045) AADT volumes were then developed from Opening Year (2025) AADT using a 2.0\% linear annual growth rate.

Figure 2-1 shows the AADT volume information developed for Existing Year (2020), Opening Year (2025), and Design Year (2045) traffic conditions.

Peak Hour Volumes were developed using the following steps:

1. Traffic counts data for study area intersections, ramps, and mainline segments were available from year 2019 field collected data. The 2019 AM and PM peak hour volumes were first adjusted and balanced where there are not driveways between adjacent junctions. A 2.5% linear annual growth rate was then applied to develop Existing Year (2020) AM and PM peak hour volumes. Figure 2-2 shows Existing Year (2020) AM and PM peak hour volumes.
2. Opening Year (2025) AM and PM peak hour volumes were then developed from Existing Year (2020) peak hour volumes by applying a 2.5% linear annual growth rate. Figure 2-3 shows Opening Year (2025) AM and PM peak hour volumes.
3. Design Year (2045) AM and PM peak hour volumes were then developed from Opening Year (2025) peak hour volumes using a 2.0% linear annual growth rate. Figure 2-4 shows Design Year (2045) AM and PM peak hour volumes.

A detailed summary of the study area growth rates trends analysis and development of the project traffic can be found in Appendix A.

The factors used in the traffic operational analysis analysis include the $T_{\text {Daily }}$ percentage, Design Hour Truck (DHT) percentage, Peak Hour Factor (PHF), Directional Distribution (D), and Design Hour Factor (K)

- The TDaily factor is the adjusted, annual daily percentage of truck traffic. This data is gathered from 2019 FTO portable traffic monitoring site 370143 for I-10 and 375033 for SR 51 (US 129), respectively.
- The DHT percentage is calculated as one half of the daily truck percentage.
- The PHF is applied to convert hourly flow to peak 15-minute flow rate for capacity analysis. A PHF of 0.92 was chosen from the 2019 Project Traffic Forecasting Handbook - Table 2-1 FDOT Standard K Factors for a transition to Urbanized Areas.
- The Directional Distribution is the percentage of the total, two-way design hour traffic traveling in the peak direction.
- The Design Hour Factor is the proportion of the AADT occurring in the peak hour.

The traffic factors for use in this IOAR are presented in Table 2-1.
Table 2-1: Summary of Traffic Factors

Roadway	TDaily 1	DHT	PHF	D	
I-10 (SR 8) W of US 129	$\mathbf{2 6 . 4 \%}$	13.2%	0.92	54.40%	9.0%
I-10 (SR 8) E of US 129	26.4%	13.2%	0.92	54.38%	9.0%
SR 51 (US 129)	5.6%	2.8%	0.92	55.90%	9.0%

[^0]

2.6 LOS Criteria

FDOT Topic No. 000-525-006 provides Level of Service (LOS) targets for the SHS. The term LOS is defined as the system of six designated ranges from " A " (best) to " F " (worst) used to evaluate roadway facility performance. The I-10 at SR 51 (US 129) interchange is located in a previously rural area but due to the commercial development around the interchange and high traffic to the city of Live Oak, it is analyzed with the Urban LOS targets. The LOS targets for major roadways analyzed in this IOAR are summarized below:

- I-10 Interstate Mainline: LOS D
- Ramps Merge/Diverge: LOS D
- Signalized/unsignalized Intersections: LOS D

2.7 Analysis Procedures

The analysis procedure was conducted using the most recent versions of the Highway Capacity Software (HCS 7) and Synchro 11. Analysis of the I-10 system and SR 51 (US 129) arterial, including the mainline, interchange ramps and intersections were based on criteria and policies detailed in the FDOT Traffic Analysis Handbook, March 2014 Edition.

The recommended improvements such as the change in intersection controls and addition of turn lanes at intersections were analyzed using Synchro.

The HCM methodology and Synchro 11 are generally classified as a series of analytical procedures (flow rate variables) that produce deterministic results (no randomness). Each transportation facility (freeway mainline, freeway ramp, signalized intersection, etc.) is analyzed using a unique methodology, which is performed independent of other adjacent facilities. The discussion of HCS and Synchro analysis is documented in subsequent sections for the Existing Year 2020, Opening Year 2025, and Design Year 2045.

2.8 Alternatives Considered

The following scenarios were considered for this project:

- Existing Year 2020: AM and PM peak hours
- No-Build Alternative - Opening Year 2025 and Design Year 2045: AM and PM peak hours
- Build Alternative - Opening Year 2025 and Design Year 2045: AM and PM peak hours

3. EXISTING CONDITIONS

The following Section provides a discussion and evaluation of the existing conditions within the area of influence. This discussion includes existing land use data, transportation systems data, existing traffic data, and existing operating and safety conditions.

3.1 Existing Land Use

The interchange falls within Suwannee County. According to the Suwannee County Property Appraiser's website the area is primarily commercial, consisting of drive-in restaurants, retail stores, hotels, service stations, and undeveloped commercial property. The existing land uses within the area of influence are shown in Figure 3-1. Land use within the study area of influence is expected to be further developed and become more commercial in the future.

3.2 Existing Transportation Network

The existing transportation network within the area of influence consists of a 4-lane interstate highway with an interchange at SR 51 (US 129). Table 3-1 summarizes the functional classification and number of lanes for I10 and SR 51 (US 129) within the project area of influence. I-10 at SR 51 (US 129) is the only interchange within the study area. This study interchange is a diamond interchange, and the existing lane configuration is provided in Figure 3-2.

Table 3-1: Functional Classification of Area Roadways

Roadway	Functional Classification	Number of Lanes
I-10	Rural Principal Arterial - Interstate	4
SR 51 (US 129)	Rural Minor Arterial	4

$\underline{I-10}-\mathrm{I}-10$ within the study area is a four lane east-west Rural Principal Arterial Interstate providing two general use lanes in each direction. The median within this section is approximately 64 feet with guardrail barrier throughout the length of the study area. The posted speed limit along $\mathrm{I}-10$ is 70 mph .

SR 51 (US 129) - SR 51 (US 129) is a Rural Minor Arterial consisting of four lanes in each direction. On the south side of the I-10 Interchange SR 51 (US 129) has a 20-foot grassy and raised median dividing the roadway. On the north side of the I-10 Interchange SR 51 (US 129) transitions to a two lane Rural Minor Arterial with no median. SR 51 (US 129) serves primarily commercial and retail properties within the area of influence. The posted speed limit along SR 51 (US 129) is 45 mph .

3.3 Field Observations

Key observations within the study area from a field visit conducted January 21, 2020 are summarized below.

- Commuters exiting I-10 using the eastbound and westbound off ramps and turning left onto SR 51 (US 129) encounter poor site distance due to the proximity to the l-10 overpass structures and associated structures' embankment. Hesitation to perform the turning movements to head north and south on SR 51 (US 129) due to poor sight distance leads to delays for motorists exiting the freeway. Drivers of heavy trucks making this movement have been observed pulling out to the median of SR 51 (US 129) and blocking through traffic in the opposite lanes of SR 51 (US 129). These conditions result in unsafe traffic conditions.
- Commuters traveling on the Westbound off ramp turning right to go northbound on SR 51 encounter merging traffic to turn right into the southern Busy Bee entrance due to the shared right turn lane between the off ramp and southern entrance. This shared lane accommodates both decelerating and accelerating traffic which leads to unsafe traffic conditions.

3.4 Existing Operational Performance

This section summarizes the existing traffic and operational analysis performed within the area of influence to assess the mobility conditions. This facility accommodates interstate and regional mobility for commuter and freight traffic.

3.4.1 HCM Based Operational Analysis

A detailed operational analysis for the Existing Year 2020 was performed for individual roadway elements, i.e., mainline segments, ramp junctions and study intersections.

HCS 7 was used for the operational analysis of freeway mainline segments and ramps; Synchro 11.0 was used for the analysis of study intersections. Synchro is adequate to analyze the change in intersection controls and addition of turn lanes. Figure 2-2 illustrates the peak hour volumes utilized for the Existing Year 2020 HCS and Synchro analysis. Additional information on the existing conditions analysis is provided in Appendix B. Existing signal timings for $68^{\text {th }}$ Terrace and SR 51 (US 129) were obtained from the local maintaining agency and were used in the Existing Year 2020 operational analysis. The existing signal timing information for $68^{\text {th }}$ Terrace and SR 51 (US 129) can be found in Appendix C.

HCS Analysis

The Existing Year 2020 HCS analysis results are summarized in Table 3-2. The results of the operational analysis show that in both AM and PM peak hours all the mainline segments operate at an acceptable LOS D or better.

Table 3-2: Existing Year 2020 HCS Analysis Summary

Segment	Analysis Type	AM Peak Hour			PM Peak Hour		
		Volum e	Density 1	LOS	Volum e	Density ${ }^{1}$	LOS
I-10 Eastbound West of SR 51	Basic Segment	642	5.4	A	1,181	9.9	A
I-10 Eastbound to SR 51 OffRamp	Diverge	552	6.5	A	1,053	12.0	B
I-10 Eastbound from SR 51 On-Ramp	Merge	552	7.0	B	1,053	11.9	B
I-10 Eastbound East of SR 51	Basic Segment	760	6.4	A	1,265	10.6	A
I-10 Westbound East of SR 51	Basic Segment	730	6.1	A	1,332	11.1	B
I-10 Westbound to SR 51 OffRamp	Diverge	556	7.5	B	1,115	13.6	B
I-10 Westbound from SR 51 On-Ramp	Merge	556	6.0	A	1,115	11.7	B
I-10 Westbound West of SR 51	Basic Segment	638	5.3	A	1,252	10.4	A

${ }^{1}$ Density $=$ passenger cars/mile/lane

Intersection Analysis

The Existing Year 2020 intersection analysis results are summarized in Table 3-3. Except the intersection of SR 51 (US 129) at $68^{\text {th }}$ Terrace, all other intersections within the project limits were analyzed as stop controlled intersections or the Existing Year 2020 conditions. In the Existing Year 2020, all intersections within the study area operate at acceptable LOS D or better.

Table 3-3: Existing Year 2020 Intersection Analysis Summary

Intersection	Type	Eastbound						Westbound						Northbound						Southbound					
		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right	
		Delay	LOS																						
AM Peak Hour																									
68th Terrace	S	-	-	16.5	B	-	-	19.1	B	10.0	A	-	-	5.0	A	11.2	B	0.1	A	4.7	A	6.8	A	-	-
		8.9/A																							
I-10 EB Ramps	U		15.6			C		-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.0	A	0.0	A	-	-
		15.6/C																							
I-10 WB Ramps	U	-	-	-	-	-	-		18.4			C		8.2	A	0.0	A	-	-	-	-	0.0	A	-	-
		18.4/C																							
Busy Bee North Entrance	U	-	-	-	-	-	-		14.2			B		-	-	0.0	A	-	-	7.7	A	0.0	A	-	-
		14.2/B																							
PM Peak Hour																									
68th Terrace	S	-	-	13.7	B	-	-	22.0	C	8.0	A			5.8	A	14.6	B	0.2	A	6.1	A	12.3	B	-	-
68th Terrace		12.2/B																							
I-10 EB Ramps	U	19.7			C			-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.4	A	0.0	A	-	-
		19.7/C																							
I-10 WB Ramps	U	-	-	-	-	-	-		26.0			D		8.2	A	-	-	0.0	A	-	-	0.0	A	0.0	A
		26.0/D																							
Busy Bee North Entrance	U	-	-	-	-	-	-		17.6			C		-	-	0.0	A	-	-	8.0	A	0.0	A	-	-
		17.6/C																							

Notes:
(1) Delay - Average Delay (seconds)
(2) $\mathrm{S}=$ Signalized; U = Unsignalized

In the existing year, the $95^{\text {th }}$ Percentile queue lengths did not exceed the storage available at any of the study intersection approaches. The queue lengths obtained from the analysis generally matched the field observations. Table 3-4 summarizes the queue analysis for Existing Year 2020.

Table 3-4: Existing Year 2020 Queue Analysis

Intersection	Time Period	Peak Hour Queues (feet)												Remarks
		Eastbound			Westbound			Northbound			Southbound			
		L	T	R	L	T	R	L	T	R	L	T	R	
68th Terrace	AM	23			22	19		5	84	0	17	88		Signalized Intersection
	PM	27			42	30		19	104	2	30	8		
	Actual Storage	250			60	60		250	1,000	500	245	430		
I-10 EB Ramps	AM	21			-	-	-	-	0	0	4	0	-	Unsignalized Intersection
	PM	41			-	-	-	-	0	0	6	0	-	
	Actual Storage	125			-	-	-	-	560	1,000	125	340	-	
I-10 WB Ramps	AM	-	-	-	50			3	0	-	-	0	0	Unsignalized Intersection
	PM	-	-	-	91			4	0	-	-	0	0	
	Actual Storage	-	-	-	160			125	340	-	-	1,025	200	
Busy Bee North Entrance	AM	-	-	-	26			-	0		1	0	-	Unsignalized Intersection
	PM	-	-	-	47			-	0		1	0	-	
	Actual Storage	-	-	-	400			-	775		225	775	-	

3.5 Existing Crash Data Summary

Vehicular crash data along I-10, SR 51 (US 129) and at the interchange ramps were obtained from the FDOT State Safety Office CAR Online. CAR Online is a database maintained annually by FDOT for crashes reported along state highway facilities. The database provides information on various characteristics associated with each crash including collision type, severity, weather conditions, road surface conditions and date/time information. The crash data was collected for the most recent validated five years, 2014 through 2018. The crashes were analyzed to assess safety conditions along I-10, SR 51 (US 129) and the interchange ramps within the project limits. The existing crash analysis performed for the IOAR is consistent with the Crash Modification Factor (CMF) methods outlined in the IARUG, IARUG Safety Analysis Guidance and Highway Safety Manual (HSM). In this section, the existing crash analysis will be broken down between I-10, SR 51 (US 129) and the interchange ramps. The raw crash data and project's crash analysis segment maps are provided in Appendix D.

The existing crashes were first segmented based on arterial, freeway and ramp segments as outlined in Chapters 12, 18 and 19 of the HSM. After segmenting I-10, SR 51 (US 129) and the interchange ramps, the crash frequency and crash rate were calculated for each segment. The 'Average Crash Rate Method' of crash analysis, based on segment length, AADT and number of crashes occurred, was used for calculating actual crash rates for the roadway segments. The actual crash rate for the study corridors from 2014 through 2018 was compared with the statewide average crash rate for the same type of facility. The following segments of the project have crash rates higher than the statewide averages:

- I-10 Eastbound between on/off Ramps
- I-10 Eastbound Merge Area from SR 51 (US 129)
- I-10 Westbound Merge Area from SR 51 (US 129)
- SR 51 (US 129) at Busy Bee North Entrance Intersection
- SR 51 (US 129) between Westbound Ramps and Busy Bee North Entrance
- Westbound Ramp Terminal
- Eastbound Ramp Terminal
- SR 51 (US 129) between Eastbound Ramps and $68^{\text {th }}$ Terrace

The average crash rates could be higher than the statewide averages at the following locations for different reasons as discussed below. These reasons are not all-inclusive or definitive of every crash within the project limits but observations of the existing conditions of the roadway in relation to the segments with crash rates higher than the statewide averages. Crashes are rare and random events that can be attributed to roadway features but also dynamic factors such as: driver awareness, vehicle maintenance, pedestrians, bicyclists, animals, and weather.

The SR 51 (US 129) at Busy Bee North Entrance Intersection, Westbound Ramp Terminal Intersection, and Eastbound Ramp Terminal Intersection could have high crash rates because they are stop controlled. This may lead to drivers making risky decisions when making the left turns at these intersections. Additionally, at the ramp terminals the I-10 bridge overpass structure and embankments could be hindering the sight distance leading to drivers making risky and unsafe movements when making the left turns from the off-ramps.

The SR 51 (US 129) segment between the Westbound Ramps and Busy Bee North Entrance could have high crash rates because of the speed difference and weaving from drivers accelerating and decelerating in the right turn lane to the Busy Bee Southern Entrance. In this lane drivers making the northbound right onto SR 51 (US 129) from the l-10 westbound off ramp encounter drivers merging and decelerating into the same lane to enter the Busy Bee at the Southern Driveway. This combination of accelerating and decelerating drivers in the same lane while weaving in- and out- of the turn lane could be leading to an increase in crashes at this area.

The SR 51 (US 129) segment between the Eastbound Ramps and $68^{\text {th }}$ Terrace higher crash rates could be contributed to the high number of commercial driveways servicing the fast food restaurants, convenience stores, and commercial shopping centers. All of these driveways are stop controlled. This could be leading to drivers making risky decisions when pulling into and out of these driveways from SR 51 (US 129).

The I-10 Eastbound and Westbound Merge areas from SR 51 (US 129) could be attributed to short acceleration lanes and slower vehicles merging with faster vehicles on I-10.

The SR 51 (US 129) segment between the Westbound Ramps and Eastbound Ramps could be attributed to the short left turn storage areas for vehicles turning from SR 51 (US 129) onto the entrance ramps. It could also be attributed to the short clear zone distances in combination with the rural typical section under the I-10 overpass structure.

3.5.1 Interstate 10

The crash analysis results revealed there were a total of 29 crashes within the project area during the most recent validated five years (2014-2018). Of these crashes, 62% were property damage only crashes, 38% were crashes with injuries, and there were no crashes with fatalities. Front to Rear were the most common type of crash accounting for 24% of total crashes followed by Side Swipe - Same Direction crashes accounting for 10\% of total crashes. There were 18 total injuries. Figure 3-3, Table 3-5, and Table 3-8 provide summaries of the crash analysis for l-10.

Figure 3-3: I-10 Crash Types (2014-2018)

Table 3-5: I-10 Crash Severity Summary (2014-2018)

Injury Type	2014	2015	2016	2017	2018	Total	Percent of Total
Number of Property Damage Only Crashes	2	3	3	3	7	18	62%
Number of Crashes with Injuries	2	2	3	3	1	11	38%
Number of Crashes with Fatalities	0	0	0	0	0	0	0%
Total	4	5	6	6	8	29	100%
Number of Injuries	8	2	4	3	1	18	
Number of Fatalities	0	0	0	0	0	0	

3.5.2 State Road 51

The Crash analysis results revealed there were a total of 73 crashes on SR 51 (US 129) within the project area during the five study years (2014-2018). Of these crashes, 62% were property damage only crashes, 37% were crashes with injuries, and 1% were crashes with fatalities. Angle crashes were the most common type of crash accounting for 47% of total crashes followed by front to rear crashes accounting for 8% of total crashes. There were 49 total injuries and 1 fatality. The fatal crash involved a driver under the influence of drugs. Figure 3-4, Table 3-6, and Table 3-8 provide summaries of the crash analysis along SR 51 (US 129).

Figure 3-4: SR 51 Crash Types (2014-2018)

Table 3-6: SR 51 Crash Severity Summary (2014-2018)

Injury Type	2014	2015	2016	2017	2018	Total	Percent of Total
Number of Property Damage Only Crashes	6	3	9	13	14	45	62%
Number of Crashes with Injuries	4	5	4	8	6	27	37%
Number of Crashes with Fatalities	0	0	1	0	0	1	1%
Total	10	8	14	21	20	73	100%
Number of Injuries	6	6	5	18	14	49	
Number of Fatalities	0	0	1	0	0	1	

3.5.3 Interchange Ramps

The crash analysis results reveal that there was a total of 16 crashes on the interchange ramps within the project area during the five study years (2014-2018). Of these crashes, 50% were property damage only crashes, 50% were crashes with injuries, and there were no crashes with fatalities. Front to rear crashes were the most common type of crash accounting for 63\% of total crashes, followed by Angle crashes and same direction Side Swipe crashes, same direction crashes both at 6% of total crashes. There were 10 total injuries, and no fatalities. Figure 3-5, Table 3-7, and Table 3-8 provide summaries of the crash analysis at the Interchange Ramps.

Figure 3-5: Interchange Ramps Crash Types (2014-2018)

Table 3-7: Interchange Ramps Crash Severity Summary (2014-2018)

Injury Type	2014	2015	2016	2017	2018	Total	Percent of Total
Number of Property Damage Only Crashes	0	1	2	3	2	8	50%
Number of Crashes with Injuries	0	1	5	2	0	8	50%
Number of Crashes with Fatalities	0	0	0	0	0	0	0%
Total	0	2	7	5	2	16	100%
Number of Injuries	0	1	5	4	0	10	
Number of Fatalities	0	0	0	0	0	0	

Table 3-8 further summarizes the existing crash data and provides the crash frequency and rates at each of the study corridors and ramps. The table also provides a comparison with statewide average crash rates of similar facilities. AADT values were determined using Figure 1 from the Traffic Development Memo (Appendix A). For the Ramp Terminals the off ramp AADTs were added to the SR 51 AADTs to get the total AADTs entering the intersection. The same methodology was used at the intersection of SR 51 and Busy Bee North Entrance, except the AADTs estimated to come out of the Busy Bee North Entrance were estimated by dividing the PM left and right peak hour volumes by the k factor.

Table 3-8: Existing Segment Crash Summary (2014-2018)

Location	Number of Crashes	Daily Entering (AADT)	Length (miles)	Crash Frequency (crashes/year)	Crash Rate (crashes/million miles traveled)	Statewide Average Crash Rate
I-10 EB Diverge Area to SR 51	0	15700	0.147	0.000	0.000	0.457
I-10 EB Off Ramp	7	1900	0.267	1.400	7.561	*
I-10 EB Segment between On \& Off Ramps	20	13800	0.529	4.000	1.501	0.457
I-10 EB On Ramp	2	2800	0.263	0.400	1.488	*
I-10 EB Merge Area from SR 51	2	16600	0.091	0.400	0.725	0.457
I-10 WB Diverge Area to SR 51	0	16100	0.091	0.000	0.000	0.457
I-10 WB Off Ramp	5	2700	0.267	1.000	3.800	*
I-10 WB Segment between On \& Off Ramps	5	13400	0.529	1.000	0.386	0.457
I-10 WB On Ramp	2	2000	0.243	0.400	2.255	*
I-10 WB Merge Area from SR 51	2	15400	0.147	0.400	0.484	0.457
SR 51 Segment between WB Ramps and Busy Bee North Entrance	3	5400	0.111	0.600	2.742	0.273
SR 51 Segment between EB Ramps and 68th Terrace	16	13400	0.227	3.200	2.882	1.332

*Statewide average crash rate not available.
Bold rows are locations with crash rates higher than the statewide average.

Table 3-9: Existing Intersection Crash Summary (2014-2018)
$\left.\begin{array}{|c|c|c|c|c|cc|}\hline \text { Location } & \begin{array}{c}\text { Number } \\ \text { of } \\ \text { Crashes }\end{array} & \begin{array}{c}\text { Daily } \\ \text { Entering } \\ \text { (AADT) }\end{array} & \begin{array}{c}\text { Length } \\ \text { (miles) }\end{array} & \begin{array}{c}\text { Crash } \\ \text { Frequency } \\ \text { (crashes/year) }\end{array} & \begin{array}{c}\text { Crash Rate } \\ \text { (crashes per } \\ \text { million entering } \\ \text { vehicles) }\end{array} & \begin{array}{c}\text { Statewide } \\ \text { Average } \\ \text { Crash }\end{array} \\ \text { Rate }\end{array}\right]$
*Statewide average crash rate not available.
Bold rows are locations with crash rates higher than the statewide average.

4. NEED

The SR 51 (US 129) interchange with I-10 is an important component of the SIS in Suwannee County, Florida and provides access to the City of Live Oak. The objective of the IOAR is to propose improvements that will provide a safer and more operationally efficient interchange.

4.1 Operational Performance

The I-10 at SR 51 (US 129) interchange ramps and intersections operate at an acceptable LOS D or better during the AM and PM peak hours in Existing Year 2020. Travel Demand forecasts indicate that the study area is expected to experience traffic growth in future years. Based on the anticipated growth in traffic, operating conditions at the interchange and the study intersections will further deteriorate. The SR 51 (US 129) at I-10 Westbound ramp terminal intersection will operate at LOS E during the PM peak hour in Opening Year 2025. Additionally, the SR 51 (US 129) at l-10 Eastbound ramp terminal intersection, SR 51 (US 129) at I-10 Westbound ramp terminal intersection, and SR 51 (US 129) at the Busy Bee North Entrance will operate at LOS F during the AM and PM peak hour in Design Year 2045. The proposed project will address these concerns by increasing capacity and enhancing operations at the interchange and providing acceptable operating conditions through the Design Year 2045.

4.2 Transportation Capacity

An increase in demand on I-10 and SR 51 (US 129) interchange is anticipated in the future due to growth in Suwannee County. As a result, additional traffic demand on $\mathrm{I}-10$ and at the interchange will need to be addressed. Table 4-1 summarized the anticipated traffic growth within the study area.

Table 4-1: Forecasted Growth in Traffic Volumes

Segment	Existing Year (2020)	Design Year (2045)	Percent Growth
I-10 Eastbound			
West of SR 51	15,700	24,600	56.7%
East of SR 51	16,600	26,200	57.8%
I-10 Westbound			
West of SR 51	15,400	24,300	57.8%
East of SR 51	16,100	25,300	57.1%
I-10 Ramps			
Eastbound Off-Ramp	1,900	2,900	52.6%
Eastbound On-Ramp	2,800	4,500	60.7%
Westbound Off-Ramp	2,700	4,200	55.6%
Westbound On-Ramp	2,000	3,200	60.0%
SR 51			
North of I-10	5,400	8,500	57.4%
South of I-10		13,400	21,000

4.3 Safety

The crash analysis results reveal there were a total of 73 crashes on SR 51 (US 129) within the project area during the five study years 2014 to 2018. The predominant crash pattern experienced within the study area include angle crashes (47\%) indicating risky decision making by motorist at intersections. If no improvements are made within the project limits of SR 51 (US 129) then the crash rate could progressively become worse as traffic increases in the area. The proposed project will implement operational improvements at the intersections and provide additional capacity that will assist in alleviating these safety concerns within the project limits.

4.4 Emergency Evacuation

I-10 and SR 51 (US 129) corridors serve as part of the emergency evacuation route network designated by the Florida Division of Emergency Management and Suwannee County. This interchange is critical in facilitating traffic flow during emergency evacuation periods.

4.5 Special Events

The Spirit of the Suwannee Music Park is an 800-acre campground located on the historic banks of the Suwannee River and is located 5 miles north of the SR 51 (US 129) and I-10 interchange on SR 51 (US 129). The Park hosts numerous events throughout the year, the largest of which was recorded to have 21,000 attendees. The proposed project will help lessen the increased strain these larger events will put on the transportation system within the study area.

5. NO-BUILD CONDITIONS

This section documents the future traffic operational conditions within the I-10 at SR 51 (US 129) interchange study area of influence for the No-Build Alternative. The analysis years considered under the No-Build Alternative are Opening Year 2025 and Design Year 2045. The operational analysis utilizes the future year peak hour forecasts for the area of influence. The primary objective of this analysis was to establish No-Build operational conditions along I-10 and at the study interchange and intersections.

The No-Build lane configuration is provided in Figure 3-2.

5.1 No-Build Operational Analysis

An individual element operational analysis was conducted for the No-Build Alternative using HCM methodologies. HCS 7 was used to perform capacity analysis for the freeway and ramps merge/diverge segments. Synchro 11 was used to analyze the study intersections. The results of this detailed analysis are presented in the following sections. Figure 2-3 and Figure 2-4 illustrate the peak hour volumes utilized for the Opening Year 2025 and Design Year 2045 No-Build Alternative HCS and Synchro analysis, respectively. Reports generated from HCS 7 and Synchro for the No-Build Alternative analysis is provided in Appendix B. Existing signal timings for $68^{\text {th }}$ Terrace and SR 51 (US 129) was obtained from the local agency and was used in the NoBuild Alternative analysis for the Opening Year 2025 and Design Year 2045. The existing signal timing report for $68^{\text {th }}$ Terrace and SR 51 (US 129) can be found in Appendix C.

5.1.1 Opening Year 2025 No-Build Analysis

HCS Analysis
The Opening Year 2025 No-Build HCS analysis is summarized in Table 5-1. The results of the HCS operational analysis show that all the mainline segments operate at an acceptable LOS in both AM and PM peak hours.

Table 5-1: Opening Year 2025 No-Build HCS Analysis Summary

Segment	Analysis Type	AM Peak Hour			PM Peak Hour		
		Volume	Density ${ }^{1}$	LOS	Volume	Density ${ }^{1}$	LOS
I-10 East Bound West of SR 51	Basic Segment	722	6.0	A	1,328	11.1	B
I-10 East Bound to SR 51 OffRamp	Diverge	621	7.3	B	1,184	13.5	B
I-10 East Bound from SR 51 On-Ramp	Merge	621	7.9	B	1,184	13.4	B
I-10 East Bound East of SR 51	Basic Segment	855	7.1	A	1,423	11.9	B
I-10 West Bound East of SR 51	Basic Segment	821	6.9	A	1,500	12.5	B
I-10 West Bound to SR 51 Off-Ramp	Diverge	625	8.4	B	1,256	15.4	B
I-10 West Bound from SR 51 On-Ramp	Merge	625	6.7	A	1,256	13.2	B
I-10 West Bound West of SR 51	Basic Segment	718	6.0	A	1,408	11.8	B

${ }^{1}$ Density = passenger cars/mile/lane

Intersection Analysis

The Opening Year 2025 No-Build intersection analysis results are summarized in Table 5-2. In Opening Year 2025, one intersection within the study area operates below LOS D in the PM peak hour: 1) SR 51 (US 129) at I10 Westbound On/Off Ramps. There is one movement at this intersection operating at LOS E in the PM peak hour. The movement is the l-10 Westbound Off Ramp left movement to SR 51 (US 129) southbound. Additionally, it should be noted the l-10 Eastbound Off Ramp left movement to SR 51 (US 129) northbound is approaching unacceptable LOS operations during the PM peak hour.

Table 5-2: Opening Year 2025 No-Build Intersection Analysis Summary

Intersection	Type	Eastbound						Westbound						Northbound						Southbound					
		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right	
		Delay	LOS																						
AM Peak Hour																									
68th Terrace	S	-	-	16.2	B	-	-	18.9	B	9.7	A	-	-	5.1	A	11.0	B	0.0	A	5.1	A	6.8	A	-	-
		8.8/A																							
		18.0			C			-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.2	A	0.0	A	-	-
I-10 EB Ramps	U	18.0/C																							
	U	-	-	-	-	-	-	23.1			C			8.4	A	0.0	A	-	-	-	-	0.0	A	0.0	A
I-10 WB Ramps		23.1/C																							
	U	-	-	-	-	-	-		15.9			C		-	-	0.0	A	0.0	A	7.8	A	0.0	A	-	-
Busy Bee North Entrance		15.9/C																							
PM Peak Hour																									
	S	-	-	13.4	B	-	-	21.8	C	7.8	A			6.1	A	14.1	B	1.0	A	7.5	A	13.1	B	-	-
68th Terrace		12.4/B																							
	U	25.3			D			-	-	-	-	-	-	0.0	A	0.0	A	0.0	A	8.6	A	0.0	A	-	-
I-10 EB Ramps		25.3/D																							
	U	-	-	-	-	-	-		41.1			E		8.4	A	-	-	0.0	A	-	-	0.0	A	0.0	A
I-10 WB Ramps		41.1/E																							
	U	-	-	-	-	-	-		21.6			C		-	-	0.0	A	0.0	A	8.1	A	0.0	A	-	-
Busy Bee North Entrance		21.6/C																							

Notes:
(1) Delay - Average Delay (seconds)
(2) $S=$ Signalized; $U=$ Unsignalized

In the Opening Year 2025 No-Build Alternative, the $95^{\text {th }}$ Percentile queue length did not exceed available storage at any of the study intersection's approaches.

The queue analysis for the Opening Year 2025 No-Build Alternative is summarized in Table 5-3.
Table 5-3: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Opening Year 2025 No-Build Alternative

Intersection	Time Period	Peak Hour Queues (feet)												Remarks
		Eastbound			Westbound			Northbound			Southbound			
		L	T	R	L	T	R	L	T	R	L	T	R	
	AM	25			23	20		6	92	0	19	9		
68th Terrace	PM	29			45	31		21	111	5	34	97		
	Actual Storage	250			60	60		250	1,000	500	245	43		
I-10 EB Ramps	AM	29			-	-	-	-	0	0	5	0	-	Unsignalized Intersection
	PM	61			-	-	-	-	0	0	7	0	-	
	Actual Storage	125			-	-	-	-	560	1,000	125	340	-	
I-10 WB Ramps	AM	-	-	-	73			3	0	-	-	0	0	Unsignalized Intersection
	PM	-	-	-	149			5	0	-	-	0	0	
	Actual Storage	-	-	-	160			125	340	-	-	1,025	200	
Busy Bee North Entrance	AM	-	-	-	36			-	0		1	0	-	Unsignalized Intersection
	PM	-	-	-	69			-	0		1	0	-	
	Actual Storage	-	-	-	400			-	775		225	775	-	

5.1.2 Design Year 2045 No-Build Analysis
 HCS Analysis

The Design Year 2045 No-Build HCS analysis is summarized in Table 5-4. The results of the HCS operational analysis show that all the mainline segments operate at an acceptable LOS in both AM and PM peak hours.

Table 5-4: Design Year 2045 No-Build HCS Analysis Summary

Segment	Analysis Type	AM Peak Hour			PM Peak Hour		
		Volume	Density ${ }^{1}$	LOS	Volume	Density ${ }^{1}$	LOS
I-10 East Bound West of SR 51	Basic Segment	1,011	8.4	A	1,860	15.6	B
I-10 East Bound to SR 51 OffRamp	Diverge	869	10.3	B	1,658	19.0	C
I-10 East Bound from SR 51 On-Ramp	Merge	869	11.1	B	1,658	19.0	C
I-10 East Bound East of SR 51	Basic Segment	1,197	10.0	A	1,993	16.7	B
I-10 West Bound East of SR 51	Basic Segment	1,150	9.6	A	2,100	17.7	B
I-10 West Bound to SR 51 Off-Ramp	Diverge	876	11.8	B	1,758	21.6	C
I-10 West Bound from SR 51 On-Ramp	Merge	876	9.4	B	1,758	18.7	C
I-10 West Bound West of SR 51	Basic Segment	1,006	8.4	A	1,971	16.5	B

${ }^{1}$ Density = passenger cars/mile/lane

Intersection Analysis

The Design Year 2045 No-Build intersection analysis results are summarized in Table 5-5. In Design Year 2045, the results indicate several operational deficiencies along SR 51 (US 129) within the study area. The following intersections will operate at LOS E or worse by year 2045:

- SR 51 at I-10 Westbound Ramps (AM and PM peak hours)
- SR 51 at I-10 Eastbound Ramps (AM and PM peak hours)
- SR 51 at the Northern Busy Bee Driveway (PM peak hours)

The limiting movements at these intersections are the stop controlled left turns onto SR 51 (US 129) from the off ramps and the Busy Bee northern entrance. This could be attributed to SR 51 (US 129) having a high posted speed and an even distribution of through traffic utilizing the roadway. This could lead to there not being sufficient traffic gaps for drivers making the left turns onto SR 51 (US 129).

Table 5-5: Design Year 2045 No-Build Intersection Analysis Summary

Intersection	Type	Eastbound						Westbound						Northbound						Southbound					
		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right	
		Delay	LOS																						
AM Peak Hour																									
68th Terrace	S	-	-	18.1	B	-	-	21.4	C	10.1	B	-	-	5.1	A	12.3	B	0.4	A	5.5	A	6.8	A	-	-
		9.5/A																							
	U	44.2			E			-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.7	A	0.0	A	-	-
I-10 EB Ramps		44.2/E																							
	U	-	-	-	-	-	-	127.4				F		9.0	A	0.0	A	-	-	-	-	0.0	A	0.0	A
I-10 WB Ramps		127.4/F																							
	U	-	-	-	-	-	-	32.5			D			-	-	0.0	A	0.0	A	8.0	A	0.0	A	-	-
Busy Bee North Entrance		32.5/D																							
PM Peak Hour																									
	S	-	-	15.5	B	-	-	27.5	C	8.4	A			6.8	A	17.9	B	0.2	A	11.7	B	17.0	B	-	-
68th Terrace		15.8/B																							
	U	165.2			F			-	-	-	-	-	-	0.0	A	0.0	A	0.0	A	9.5	A	0.0	A	-	-
I-10 EB Ramps		165.2/F																							
	U	-	-	-	-	-	-	407.5				F		9.1	A	-	-	0.0	A	-	-	0.0	A	0.0	A
I-10 WB Ramps		407.5/F																							
Busy Bee North Entrance	U	-	-	-	-	-	-	121.1			F			-	-	0.0	A	0.00	A	8.6	A	0.0	A	-	-
		121.1/F																							

Notes:
(1) Delay - Average Delay (seconds)
(2) $\mathrm{S}=$ Signalized; U = Unsignalized

In the Design Year 2045 No-Build Alternative, the $95^{\text {th }}$ Percentile queue length exceeded the available storage at the following three locations:

- $68^{\text {th }}$ Terrace - westbound to southbound left movement during PM peak hour
- I-10 Eastbound Ramps - eastbound to northbound left movement during the AM and PM peak hours
- I-10 Westbound Ramps - westbound to southbound left movement during the AM and PM peak hours

The $68^{\text {th }}$ Terrace westbound left during the PM peak hour movement services the Walmart shopping plaza. It will not be necessary to increase storage length at this location because traffic will have additional storage in the shopping plaza parking lot and impacts to the parking lot are outside of the scope of this project.

The inadequate storage length of the Eastbound and Westbound ramp lefts will be addressed in the Build Alternative.

The queue analysis for the Design Year 2045 No-Build Alternative is summarized in Table 5-6.

Table 5-6: $95^{\text {th }}$ Percentile Queue Length Summary - Design Year 2045 No-Build Alternative

Intersection	Time Period	Peak Hour Queues (feet)												Remarks
		Eastbound			Westbound			Northbound			Southbound			
		L	T	R	L	T	R	L	T	R	L	T	R	
	AM	36			33	27		7	134	2	25			
68th Terrace	PM	43			71	42		30	182	0	51			
	Actual Storage	250			60	60		250	1,000	500	245			
I-10 EB Ramps	AM	100			-	-	-	-	0	0	8	0	-	Unsignalized Intersection
	PM	278			-	-	-	-	0	0	11	0	-	
	Actual Storage	125			-	-	-	-	560	1,000	125	340	-	
I-10 WB Ramps	AM	-	-	-	313			5	0	-	-	0	0	Unsignalized Intersection
	PM	-	-	-	645			9	0	-	-	0	0	
	Actual Storage	-	-	-	160			125	340	-	-	1,025	200	
Busy Bee North Entrance	AM	-	-	-	114			-	0		2	0	-	Unsignalized Intersection
	PM	-	-	-	316			-	0		1	0	-	
	Actual Storage	-	-	-	400			-	775		225	775	-	

6. ALTERNATIVES

As part of this IOAR, the following alternatives have been analyzed:

- No-Build Alternative
- Build Alternative

6.1 No-Build Alternative

The No-Build Alternative provides a baseline for comparison to all study alternatives. This alternative represents the existing physical and operational conditions within the area of influence including all planned and programmed roadway improvements over the course of the analysis years.

The No-Build Alternative considered the existing configuration plus any programmed improvement with future traffic. The No-Build Alternative does not satisfy the objectives of this project. The operational analysis results for the No-Build Alternative are provided in Section 5.

6.2 Transportation Systems Management and Operations Improvements

The Transportation Systems Management and Operations (TSM\&O) Program endeavors to provide a safe transportation system that ensures the mobility of people and goods, enhances economic prosperity, and preserves the quality of our environment and communities. Intelligent Transportation Systems (ITS), multimodal applications and adjusting signal phasing and timing are TSM\&O strategies commonly used to maximize transportation infrastructure utilization. Such improvements are often less costly and require little to no right-of-way compared to physical expansion of the transportation network.

The TSM\&O improvements considered for SR 51 include optimized signal timing and phasing plans and coordinated signal timings with offsets, cycle lengths and splits optimized for the study area intersections. These improvements will not satisfy the purpose and need alone, thus they are included in the Build Alternative analysis.

6.3 Build Alternative

One Build Alternative was considered for the study interchange in this IOAR. The following are the major improvements with the Build Alternative:

- Signalize Intersections - The Build Alternative proposes signalizing the I-10 Eastbound and Westbound Ramp Terminals and the Busy Bee Northern Entrance.
- Adding an additional left turn lane to the Eastbound and Westbound Off Ramps. This will enhance each off-ramp to operate with dual left turns each Off Ramp dual lefts.
- Adding individual right turn lanes to the Eastbound and Westbound Off Ramps. This will increase storage for right turning vehicles.
- Increasing the storage length of the SR 51 (US 129) Southbound left turn onto the Eastbound On Ramp. The additional thru lane at the upstream signal will act as additional storage for this movement.
- Increasing the storage length of the SR 51 (US 129) Northbound left turn onto the Westbound On Ramp. The additional thru lane at the upstream signal will act as additional storage for this movement.
- Signalizing the Busy Bee North Entrance at SR 51 (US 129) intersection.
- Moving the SR 51 (US 129) Southbound left turn into the Busy Bee North Entrance to the Busy Bee Southern Entrance.
- Adding curb and gutter, bicycle lanes, and sidewalks from south of the EB Ramps to north of the WB Ramps.
- Widening SR 51 roadway from two lanes to four lanes with median, curb, gutter and sidewalk improvements from south of the Busy Bee Southern Entrance to north of the Busy Bee Northern Entrance.
- Shorten the length of the right turn lane onto the I-10 EB On Ramp. The existing turn lane intersects five driveways and by shortening it we can reduce unnecessary conflict points. Analysis in the Design Year for the Build Alternative shows the reduced right turn lane will be sufficient.
- Restriping the direct yield controlled right turn from the I-10 Westbound Off Ramp to the Busy Bee South Entrance. This will facilitate traffic to honor the yield control and eliminate a high speed weave between traffic accessing the southern Busy Bee Entrance and I-10 Westbound Off Ramp Traffic making the right to go Northbound on SR 51 (US 129).

The Build Alternative interchange lane configuration is shown in Figure 6-1 and the Build Alternative concept plans are included in Appendix E.

6.4 Build Alternative Design Traffic

The Build Alternative design traffic for Opening Year 2025 and Design Year 2045 were developed by redistributing the No-Build Alternative traffic volumes based on the proposed geometric changes with the Build Alternative. The primary traffic pattern change with the Build Alternative is the shift in the SR 51 (US 129) southbound left turn into the Busy Bee Northern Entrance. This movement is relocated to the Busy Bee Southern Entrance.

The Build Alternative peak hour traffic volumes for Opening Year 2025 and Design Year 2045 are presented in Figure 6-2 and Figure 6-3.

7. EVALUATION OF ALTERNATIVES

This section discusses the analysis of alternatives based on engineering, safety and financial factors. The NoBuild Alternative was evaluated in Section 5; the Build Alternative is analyzed and compared with the No-Build Alternative in this section. A comparison of the No-Build and the Build Alternative is provided in this section. The evaluation criteria are described as follows:

- Conformance with Local, Regional and State Transportation Plans
- Compliance with FHWA Requirements Policies and Engineering Standards
- Traffic Operational Performance
- Safety
- Achievement of Objectives

7.1 Conformance with Local, Regional and State Transportation Plans

The improvements proposed in the IOAR for the Build Alternatives are consistent with improvement plans incorporated in the State Transportation Improvement Plan (STIP) and FDOT's Work Program.

7.2 Compliance with Policies and Engineering Standards

The design criteria for this project are based on design parameters outlined in the FDOT Florida Design Manual (FDM), the FDOT Manual of Uniform Minimum Standards for Design, Construction and Maintenance for Streets and Highways and AASHTO's A Policy on Geometric Design of Highway and Streets published in 2011.

7.3 HCM Based Individual Element Build Operational Analysis

An individual element operational analysis was conducted for the Build Alternative. The LOS for individual freeway elements was determined using HCS 7. Ramp analysis was performed by calculating the merge/diverge areas density and LOS. Synchro 11 was used to analyze the study intersections. The results of this detailed analysis are presented in the following sections. Figure 6-2 and Figure 6-3 illustrate the peak hour volumes utilized for the Opening Year 2025 and Design Year 2045 Build Alternative HCS and Synchro analysis, respectively. Reports generated from HCS 7 and Synchro for the Build Alternative analysis are provided in

Appendix F.

7.4 Build Alternative Operational Analysis

The Build Alternative evaluated for the SR 51 (US 129) interchange along l-10 is described in detail in Section 6.3.

The No-Build Alternative Operational analysis presented in Section 5 of this IOAR, demonstrated that failing conditions are expected within the study area by Design Year 2045 if no infrastructure improvements are considered. To address these operational deficiencies, improvements were developed and evaluated for the SR 51 (US 129) interchange. The Build Alternative operational analysis was performed for the interchange using HCM procedures.

It should be noted that the proposed improvements did not include any design modification to I-10 mainline and associated merge/diverge areas. Therefore, HCS freeway operational analysis for the Build Alternative is similar to the No-Build Alternative. Also, the Build Alternative did not include any improvements at the SR 51 (US 129) and $68^{\text {th }}$ Terrace intersection as this intersection is considered as an adjacent intersection to the proposed project improvements. The lane configuration and results for this intersection are the same as the No-Build Alternative.

7.4.1 Opening Year 2025 Build Alternative Analysis

Intersection Analysis

The Opening Year 2025 Build Alternative intersection analysis results are summarized in Table 7-1. The Build Alternative did not include any improvements at the SR 51 (US 129) and 68 ${ }^{\text {th }}$ Terrace intersection. The lane configuration and results for this intersection are the same as the No-Build Alternative. All intersections within the project area operate at an acceptable LOS D or better in both AM and PM peak hours. No operational issues are observed at any of these intersections in the Opening Year 2025 with the Build Alternative.

Table 7-1: Opening Year 2025 Build Alternative Intersection Analysis Summary

Notes:
(1) Delay - Average Delay (seconds)
(2) S = Signalized

In the Opening Year 2025 Build Alternative, the $95^{\text {th }}$ Percentile queue lengths did not exceed the available storage at any of the study intersection approaches with the Build Alternative.

Table 7-2 summarized the queue analysis for Opening Year 2025 Build Alternative.

Table 7-2: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Opening Year 2025 Build Alternative

Intersection	Time Period	Peak Hour Queues (feet)												Remarks
		Eastbound			Westbound			Northbound			Southbound			
		L	T	R	L	T	R	L	T	R	L	T	R	
	AM	32			31	26		10	92	0	20	5		
68th Terrace	PM	33			55	36		41	124	0	29	5		Signalized
	Actual Storage	250			60	60		250	1,000	500	245	430		
I-10 EB Ramps	AM	25	-	0	-	-	-	-	7	0	1	3	-	Signalized Intersection
	PM	36	-	0	-	-	-	-	14	0	2	4	-	
	Actual Storage	260	-	300	-	-	-	-	560	320	340	340	-	
I-10 WB Ramps	AM	-	-	-	56	-	0	1	1	-	-	37	-	Signalized Intersection
	PM	-	-	-	56	-	0	2	4	-	-	36	-	
	Actual Storage	-	-	-	205	-	245	340	-	-	-	1,025	-	
Busy Bee South Entrance	AM	-	-	-	-	-	-	-	0	0	1	0	-	Unsignalized Intersection
	PM	-	-	-	-	-	-	-	0	0	1	0	-	
	Actual Storage	-	-	-	-	-	-	-	385	385	595	285	-	
Busy Bee North Entrance	AM	-	-	-	102	-	18	-	21		-	34	-	Signalized Intersection
	PM	-	-	-	126	-	17	-	32		-	35	-	
	Actual Storage	-	-	-	400	-	60	-	285		-	500	-	

7.4.2 2045 Build Analysis

Intersection Analysis

The Design Year 2045 Build Alternative intersection analysis results are summarized in Table 7-3. The Build Alternative did not include any improvements at the SR 51 (US 129) and $68^{\text {th }}$ Terrace intersection. The lane configuration and results for this intersection are the same as the No-Build Alternative. In Design Year 2045, all the intersections within the project operate at acceptable LOS D or better in both AM and PM peak hours. No operational issues are observed at any of the study intersections in the Design Year 2045 Build Alternative. All individual movements at the study intersections operate at the acceptable LOS in Design Year 2045 under the Build Alternative versus the No-Build condition that had several failing movements.

Table 7-3: Design Year 2045 Build Alternative Intersection Analysis Summary

Intersection	Type	Eastbound						Westbound						Northbound						Southbound					
		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right		Left		Thru		Right	
		Delay	LOS																						
AM Peak Hour																									
68th Terrace	S	-	-	26.2	C	-	-	32.2	C	13.4	B	-	-	10.7	B	10.6	B	0.1	A	2.6	A	2.3	A	-	-
		7.3/A																							
I-10 EB Ramps	S	30.1	C	-	-	1.0	A	-	-	-	-	-	-	-	-	2.1	A	0.7	A	1.0	A	0.8	A	-	-
		2.4/A																							
I-10 WB Ramps	S	-	-	-	-	-	-	31.8	C	-	-	0.5	A	0.8	A	0.8	A	-	-	-	-	13.7	B	-	-
		10.9/B																							
Busy Bee South Entrance	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.0	A	0.0	A	-	-
		8.0/A																							
Busy Bee North Entrance	S	-	-	-	-	-	-	32.7	C	-	-	8.3	A	-	-	4.6	A	-	-	-	-	6.4	A	-	-
		10.9/B																							
PM Peak Hour																									
68th Terrace	S	-	-	20.7	C	-	-	41.0	D	10.5	B	-	-	15.3	B	14.8	B	0.1	A	7.1	A	3.6	A	-	-
		11.3/B																							
I-10 EB Ramps	S	35.7	D	-	-	1.2	A	-	-	-	-	-	-	-	-	3.8	A	2.0	A	1.8	A	0.5	A	-	-
		4.1/A																							
I-10 WB Ramps	S	-	-	-	-	-	-	35.9	D	-	-	1.8	A	1.8	A	1.7	A	-	-	-	-	11.7	B	-	-
		9.5/A																							
Busy Bee South Entrance	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0	A	0.0	A	8.6	A	0.0	A	-	-
		8.6/A																							
Busy Bee North Entrance	S	-	-	-	-	-	-	37.0	D	-	-	7.8	A	-	-	4.5	A	-	-	-	-	7.7	A	-	-
		12.5/B																							

Notes:
(1) Delay - Average Delay (seconds)
(2) S = Signalized

In the Design Year 2045 Build Alternative, the $95^{\text {th }}$ Percentile queue lengths did not exceed the storage available at the any of the study intersection approaches, except for $68^{\text {th }}$ Terrace Westbound left movement during the PM peak hours. No improvements are proposed at the $68^{\text {th }}$ Terrace Westbound left movement because it is outside of the scope of this project, also a temporary construction easement would be needed to modify the Walmart Shopping Plaza's parking lot, and any spill back from the Westbound left queue is in to the shopping plaza's parking lot. Additionally, it should be noted the queue lengths are less at l-10 Eastbound Ramp Terminal, I-10 Westbound Ramp Terminal, and Busy Bee North Entrance intersections when compared to the No-Build Alternative in the Design Year 2045. Table 7-4 summarized the queue analysis for Design Year 2045 Build Alternative.

Table 7-4: 95 ${ }^{\text {th }}$ Percentile Queue Length Summary - Design Year 2045 Build Alternative

Intersection	Time Period	Peak Hour Queues (feet)												Remarks
		Eastbound			Westbound			Northbound			Southbound			
		L	T	R	L	T	R	L	T	R	L	T	R	
68th Terrace	AM	41			38	30		14	140	0	13	70		Signalized Intersection
	PM	46			78	45		57	198	0	50	7		
	Actual Storage	250			60	60		250	1,000	500	245	43		
I-10 EB Ramps	AM	32	-	0	-	-	-	-	9	0	2	5	-	Signalized Intersection
	PM	51	-	0	-	-	-	-	7	0	3	3	-	
	Actual Storage	260	-	300	-	-	-	-	560	320	340	340	-	
I-10 WB Ramps	AM	-	-	-	74	-	0	1	1	-	-	87	-	Signalized Intersection
	PM	-	-	-	80	-	0	4	8	-	-	91	-	
	Actual Storage	-	-	-	205	-	245	340	340	-	-	1,025	-	
Busy Bee South Entrance	AM	-	-	-	-	-	-	-	0	0	2	0	-	Unsignalized Intersection
	PM	-	-	-	-	-	-	-	0	0	1	0	-	
	Actual Storage	-	-	-	-	-	-	-	385	385	595	285	-	
Busy Bee North Entrance	AM	-	-	-	129	-	21	-	33		-	54	-	Signalized Intersection
	PM	-	-	-	183	-	21	-	50		-	58	-	
	Actual Storage	-	-	-	400	-	60	-	285		-	500	-	

7.5 Build Alternative Safety Analysis

To determine the potential safety benefits of the proposed Build Alternative a crash modification factor (CMF) based safety evaluation was performed for this study. CMFs were obtained from the CMF Clearinghouse funded by FHWA.

The safety evaluation was developed for the following intersections: SR 51 at the Eastbound Ramp Terminal, SR 51 (US 129) at the Westbound Ramp Terminal, and SR 51 (US 129) at the Northern Busy Bee Entrance. The proposed build improvements will mainly affect operations at these intersections through installing signalization. Three CMFs were identified to be applied to the historical crash frequency at the three intersections. The CMFs identified were developed for use at non-interchange related intersections. CMFs were not available for the interchange related intersections (EB and WB Ramp Terminals); therefore, the best available CMFs were used for this analysis. The CMFs used are summarized in Table 7-5.

Table 7-5: Crash Modification Factor (CMF) Summary Table

CMF ID	Description	CMF
$\mathbf{3 2 2}$	Install A Traffic Signal - All Types (All Severities)	0.95
$\mathbf{3 2 3}$	Install A Traffic Signal - Angle (All Severities)	0.33
$\mathbf{3 2 4}$	Install A Traffic Signal - Rear-end (All Severities)	$\mathbf{2 . 4 3}$

The CMFs are applied to the aggregate of the crashes at all three intersections. These crashes were obtained from the FDOT State Safety Office Car Online System for the years 2014 through 2018. There were a total of 41 crashes within these limits, from 2014 through 2018. The majority of the crashes were Angle crashes (21 crashes or 51\%).

Figure 7-1: Crash Types at Intersections of Interest (2014-2018)

The CMFs are applied to the crashes at the three intersections examined along SR 51 (US 129). At these locations, the crashes will result in a 67 percent decrease in angle crashes, 143 percent increase in rear end crashes, and 5 percent decrease in all other applicable crash types for the Build Alternative. This will result in an estimated reduction of 2.814 angle crashes and a reduction of 0.170 all other crashes. However, there will be an estimated increase of 0.858 rear-end crashes; signalized intersections tend to increase rear end crashes because of interrupted traffic flow; however, signalized intersections tend to have lower fatality rates compared to unsignalized intersections because of slower average speeds associated with the interrupted traffic flow. This results in a reduction of a total of 2.126 crashes per year by the Build Alternative. The effects of the Build Alternative on crashes are summarized in Table 7-6 and the CMF Clearinghouse summary reports are provided in Appendix G.

Table 7-6: Build Alternative Crash Reduction

Crash Type	Historical Crashes (2014- 2018)		Crashes per Year				CMF	Est. Crash per Year After Improvements	\% Change
	Crashes	Yealternative							
Angle	21	4.200	0.33	1.386	-67%				
Rear-End	3	0.600	2.43	1.458	143%				
Other	17	3.400	0.95	3.230	-5%				
Totals:	41	8.200		6.074	-26%				

7.5.1 Pedestrian and Bicycle facilities

The Build Alternative includes adding pedestrian and bicycle facilities such as sidewalks, crosswalks, bike lanes, and key holes to the project area that were previously not present. From a qualitative perspective, accommodating pedestrians and bicyclist through the project area compared to the No-Build conditions. The Build Alternative should improve safety and operations for vehicles, pedestrians, and bicyclists alike.

7.6 Alternatives Comparison

The No-Build Alternative and the Build Alternative were compared, and a summary is provided in the sections below.

7.6.1 Operational Comparison

This section compares the mainline, merge/diverge and intersections traffic operational performance of the No-Build and Build Alternatives.

The No-Build Alternative intersections of SR 51 (US 129) at the Eastbound Ramps, SR 51 (US 129) at the Westbound Ramps, and SR 51 (US 129) at the Northern Busy Bee Entrance do not operate at an acceptable LOS and individual movements operate at LOS F in the Design Year 2045. The Build Alternative will improve traffic operations at these intersections to an acceptable LOS (LOS D or better) during the Design Year 2045.

7.6.2 Safety Comparison

The quantifiable safety benefits of the Build Alternative were predicted to decrease crashes by 2.126 per year when compared to the No-Build Alternative. This is a 26% decrease in overall crashes within the study areas. Additionally, from a qualitative perspective, crashes are expected to decrease around the Busy Bee Southern entrance because of the Build Alternatives modifications to the right turn lane into the Busy Bee. The Build Alternative will increase bicycle and pedestrian safety with the addition of bicycle and pedestrian facilities that are not present under the No-Build Alternative.

7.6.3 Cost Estimation

A cost estimation was performed for the Build Alternative. The Build Alternative cost estimate is shown in Table 7-7. The total project cost for the Build Alternative is $\$ 7,678,353$. The FDOT Long Range Estimating (LRE) is provided in Appendix \mathbf{H}.

Table 7-7 Build Alternative Cost Estimate

Cost	Build Alternative
Roadway Construction (LRE Cost)	$\$ 6,142,683$
Engineering/Design (10\% Construction)	$\$ 614,268$
CEI (15\% Construction)	$\$ 921,402$
Total Project Cost	$\$ 7,678,353$

7.7 Recommended Alternative

The No-Build Alternative will not accommodate the travel demand at the I-10 at SR 51 (US 129) interchange. In the Design Year 2045, significant operational deficiencies exist. Three out of four study intersections operate at unacceptable LOS in the Design Year 2045 with No-Build Alternative. These operational deficiencies are associated with high arterial through and left-turn volumes at the SR 51 (US 129) ramp terminal intersections and the Busy Bee North Entrance and can be attributed to the stop-controlled intersections.

The Build Alternative for this study performs substantially better than the No-Build Alternative for all future years. The proposed interchange improvements provide additional capacity for the off ramp left turn movements onto SR 51 (US 129) and signalize the intersections at the ramp terminals, as well as the northern Busy Bee Entrance, resulting in lower intersection delay. These improvements help process traffic travelling to and from the interchange quickly with less delays.

A quantitative safety analysis was also performed to determine if the Build Alternative addressed the existing safety concerns. Based on the proposed improvements, crashes are expected to reduce by 2.126 crashes per year.

Considering all the findings described in the IOAR, the Build Alternative is recommended as the Preferred Alternative for approval in this study.

7.8 Conceptual Signing Plan

A conceptual signing plan was prepared for the Build Alternative. Appendix I presents the conceptual signing plan for proposed modifications within the area of influence. The conceptual signing plan is consistent with the Manual on Uniform Traffic Control Devices (MUTCD).

7.9 Design Exceptions and Variations

Implementation of the proposed improvements will not require any design exceptions but will require one design variation. The design variation will be for 5 -foot bicycle lanes along SR 51 (US 129).

8. JUSTIFICATION

The proposed improvements at the I-10 interchange with SR 51 (US 129) are consistent with the requirements set by the FHWA Access to the Interstate System FDOT Policy No. 000-525-015 dated May 22, 2017 and the New or Modified Interchanges FDOT Procedure No. 525-030-160. The roadway enhancements in this IOAR will provide traffic relief, thereby enhance safety within the area of influence. The I-10 at SR 51 (US 129) interchange will operate at an acceptable LOS through the Design Year 2045 with the proposed improvements.

8.1 Compliance with FHWA General Requirements

The following requirements serve as the primary decision criteria used in approval of interchange modification projects. Responses to each of the FHWA two policy points are provided to show that the proposed modification for the I-10 at SR 51 (US 129) interchange is viable based on the operational and safety analysis performed to date.

8.1.1 FHWA Policy Point 1

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

An in-depth operational and safety analysis was conducted to study the impacts of the proposed improvements at the I-10 and SR 51 (US 129) interchange. Several performance measures were used to compare the operations of the existing system under No-Build and Build conditions. Key measures included freeway densities, intersection delays LOS, $95^{\text {th }}$ percentile queue lengths and safety under existing and proposed conditions.

From an operational perspective in the Design Year 2045 under the No-Build Alternative, operational and safety deficiencies will exist. The intersections along SR 51 (US 129) at the Eastbound and Westbound Ramps,
as well as the Busy Bee Northern Entrance, will operate at LOS E or worse in the AM and PM peak hours. These deficiencies are attributed to the insufficient capacity and operations at all three intersections.

The Build Alternative for this study performs substantially better than the No-Build Alternative for all future years. The proposed interchange improvements provide additional capacity for the heavy left turn volumes and signalize the eastbound and westbound ramp terminals with SR 51 and the Busy Bee North Entrance intersection with SR 51 (US 129). By implementing these improvements, the study intersections of I-10 at SR 51 (US 129) will operate at acceptable LOS C or better in both AM and PM Peak hour through the Design Year 2045.

The safety analysis performed for this study indicated a total of 118 crashes occurred within the project area, of which 73 of the crashes occurred on the project segment of SR 51 (US 129) from 2014 to 2018. The predominant crash types that occurred within the study area were angle collisions.

With the improved operations under the Build Alternative, it is anticipated to enhance safety within the project area. A CMF safety analysis was performed for the study area where improvements are to be implemented and could be quantified. Based on the safety analysis, it is predicted that a reduction of 2.126 crashes per year will occur due to the recommended improvements.

Overall, the Build Alternative provides significantly better traffic operations and enhances safety when compared to the No-Build Alternative.

In conclusion, the comparison of the No-Build and Build Alternatives show the proposed interchange improvements provide enhanced operation and safety conditions. The proposed modifications in the Build Alternative are not anticipated to have a negative impact on operations or safety of the $\mathrm{I}-10$ mainline or any adjacent interchanges.

8.1.2 FHWA Policy Point 2

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

The proposed improvements to the I-10 at SR 51 (US 129) interchange and adjacent intersections will provide full access and cater to all traffic movements from SR 51 (US 129) to and from I-10. The proposed
modifications are designed to meet current standards for federal-aid projects on the interstate system and conform to American Association of State Highway and Transportation Official (AASHTO) and the FDOT Design Manual (FDM).

9. CONCEPTUAL FUNDING PLAN/CONSTRUCTION SCHEDULE

The improvements proposed as part of the Build Alternative at the I-10 at SR 51 (US 129) interchange are performed under the Programmatic Agreement with FHWA. This project is included in the 2021-2025 FDOT Five Year Work Program. This project is also included in the Statewide Transportation Improvement Program (STIP) adopted in September 2020 for Fiscal Year (FY) 2020/21-2023/24. At this time the project has Federal Funding programmed for Design in FY 2023 and Construction in FY 2025.

LIST OF APPENDICES

Appendix A Traffic Development Document
Appendix B No-Build Existing Year 2020, Opening Year 2025, and Design Year 2045 HCS and Synchro Outputs
Appendix C Existing Signal Timing Report
Appendix D Raw Crash Data and Project Segment Maps
Appendix E Build Alternative Concept Plans
Appendix F Build Alternative Opening Year 2025 and Design Year 2045 Synchro and HCS Outputs
Appendix G Safety Analysis - Crash Modification Factors
Appendix H FDOT Long Range Estimate
Appendix I Build Alternative Conceptual Signing Plan

APPENDIX A

Traffic Development Document

I-10 at US 129 IOAR - Traffic Development

I) Existing Traffic

The weekday turning movement counts (TMCs) were collected during the morning and evening peak periods for the following study intersections:

- US 129/ at $68^{\text {th }}$ Terrace
- US 129 at I-10 eastbound Ramps
- US 129 at I-10 westbound Ramps
- US 129 at Busy Bee South Entrance and
- US 129 at Busy Bee North Entrance/Exit

The TMCs were collected for the following hours on November 06, 2019:

- AM Peak Period - 06:30 AM to 10:30 AM
- PM Peak Period - 03:30 PM to 07:30 PM

24-hour hose counts were collected on November 06, 2019 for the following study interchange ramps:
US 129 at I-10 eastbound off ramp
US 129 at I-10 eastbound on ramp
US 129 at I-10 westbound off ramp
US 129 at I-10 westbound off ramps
In addition to above traffic counts data, traffic volumes data from Florida Traffic Online (FTO) was also obtained for I-10 mainline west and east of US 129, US 129 interchange ramps and US 129 roadway south and north of I-10.

The above collected data was used to establish Existing Conditions 2020 traffic volumes as presented in Section II-4.

II) Design Traffic Development

1. Historical Traffic Growth

The historical AADT volumes for the past 10 years were obtained from FTO to study the historical growth rate. The historical growth rate was estimated based on regression analysis from two (2) FDOT count stations along I-10 mainline and one (1) count station along US 129. The analysis was performed using FDOT's Trend tool.

The annual historic growth rates results are shown in Table 1 with their R square values. FDOT defines acceptable Historic Trend Growth Rate as that which has an R square of 75% and greater. It was noted that most of the sites have linear growth rate with higher R square value as compared to compound growth rate. Based on information presented in Table 1 below, it is noted that only one site has R square value higher than 75%. However, due to limited count sites, all three sites were considered. Average historic growth rate of 2.45% was estimated and projected linear growth rate of 2.52% from existing year 2019 to design year 2045.

Table 1 - Historic Traffic Growth Rates

Roadway	Location	FDOT Count Station	Annual Historic Growth Rate (2009 to 2019)	Projected Linear Growth Rate (2019 to 2045)	Trend R Square
	West of US 129	370143	3.39%	2.53%	62.96%
	East of US 129	370238	2.27%	2.94%	82.31%
US 129	South of I-10	375033	1.68%	2.08%	68.84%
Average			$\mathbf{2 . 4 5 \%}$	$\mathbf{2 . 5 2 \%}$	$\mathbf{7 1 . 3 7 \%}$

2. Population Projections

In addition to the historical trend analysis, 2010 census data and 2020 and 2045 (low, medium and high) population projection data from Bureau of Economic and Business Research (BEBR) was used for comparison and to determine the reasonableness of growth rate estimate. Table 2 shows 2010 census data and 2020 and 2045 population projections for Suwannee County. These growth rates show the population growth will occur at below one (1\%) percent with low and medium projections in Suwannee County from 2020 to 2045.

Table 2 - Suwannee County Population Growth Rates

Year	Census	BEBR Projections			Average
Population		Low	Medium	High	
2010	41,551				
2020		44,000	45,900	47,700	
2045		46,500	54,700	65,700	
Linear Growth Rate					
$2010-2020$		0.59%	1.05%	1.48%	$\underline{\mathbf{1 . 0 4 \%}}$
$2020-2045$		0.23%	0.77%	1.51%	$\underline{\mathbf{0 . 8 3} \%}$

3. Recommended Growth Rates

In order to develop 2025 and 2045 traffic volumes, historic trend analysis for the study area roadways and population growth for Suwannee County were considered. The study interchange is not covered with a regional or district travel demand model. Based on the comparison of above sources, a linear growth rate of $\mathbf{\mathbf { 2 . 5 } \%}$ is recommended for estimating existing year 2020 and opening year 2025 design hour volumes using the 2019 counts. A linear growth rate of $\underline{\mathbf{2} . \mathbf{0 \%}}$ is recommended for estimating design year 2045 volumes applying this growth rate to 2025 peak hour volumes.

4. Traffic Volumes Development

Traffic volumes for Existing Year 2020, Opening Year 2025 and Design Year 2045 were developed using annual linear growth rates recommended in Section 3.0 following steps listed below:

4a. Annual Average Daily Traffic (AADT) Development

Step 1: AADT volumes for I-10 mainline east and west of US 129 and US 129 ramps for year 2018 were obtained from FDOT Traffic Online. Daily ramps volumes were also available from 2019 hose counts. Both 2018 and 2019 data was reviewed to develop Existing Year 2020 AADT volumes using a 2.5% annual linear growth rate.

Step 2: Opening Year 2025 AADT volumes were then developed from 2020 AADT using a 2.5% annual linear growth rate.

Step 3: Design Year 2045 AADT volumes were then developed from 2025 AADT using a 2.0\% annual linear growth rate.

Figure 1 shows mainline and ramp AADT for Existing Year 2020, Opening Year 2025 and Design Year 2045.

4b. Peak Hour Volumes Development

Step 1: Traffic counts data for study area intersections, ramps and mainline segments was available from year 2019. The 2019 AM and PM peak hour volumes were first adjusted and balanced where no driveway exists between adjacent junctions. A 2.5% annual linear growth rate was then applied to develop Existing Year 2020 AM and PM peak hour volumes. Figure 2 shows Existing Year 2020 AM and PM peak hour volumes.

Step 2: Opening Year 2025 AM and PM peak hour volumes were then developed from 2020 peak hour volumes using a 2.5% annual linear growth rate. Figure 3 shows Opening Year 2025 AM and PM peak hour volumes.

Step 3: Design Year 2045 AM and PM peak hour volumes were then developed from 2025 peak hour volumes using a 2.0% annual linear growth rate. Figure 4 shows Design Year 2045 AM and PM peak hour volumes.

APPENDIX B

No-Build Existing Year 2020, Opening Year 2025, and Design Year 2045 HCS 7 and Synchro Outputs

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	552	208
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	680	232
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.19	0.12
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (Dr), pc/mi/ln	10.7
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.310
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	On-Ramp Influence Area Speed (Sr), mi/h	64.8
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	680	Ramp Junction Speed (S), mi/h	64.8
Flow Entering Ramp-Infl. Area (vr12), pc/h	912	Average Density (D), pc/mi/ln	7.0
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	450	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	556	83
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (fHv)	684	93
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.16	0.05
Volume-to-Capacity Ratio (v/c)		
Speedand Density		

Speed and Density

| Upstream Equilibrium Distance (Leq), ft | - | Density in Ramp Influence Area (DR), pc/mi/ln | 8.7 |
| :--- | :--- | :--- | :--- | :--- |
| Distance to Upstream Ramp (Lup), ft | - | Speed Index (Ms) | 0.298 |
| Downstream Equilibrium Distance (Leq), ft | - | Flow Outer Lanes (voA), pc/h/ln | - |
| Distance to Downstream Ramp (LDown), ft | - | On-Ramp Influence Area Speed (SR), mi/h | 65.2 |
| Prop. Freeway Vehicles in Lane 1 and 2 (Pfm) | 1.000 | Outer Lanes Freeway Speed (So), mi/h | - |
| Flow in Lanes 1 and 2 (v12), pc/h | 684 | Ramp Junction Speed (S), mi/h | 65.2 |
| Flow Entering Ramp-Infl. Area (VR12), pc/h | 777 | Average Density (D), pc/mi/ln | 6.0 |
| Level of Service (LOS) | A | | |

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	642	90
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHv)	0.883	0.973
Flow Rate (vi), pc/h	790	101
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.18	0.05

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	9.2
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.437
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.6
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (V122), pc/h	790	Ramp Junction Speed (S), mi/h	60.6
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln	6.5
Level of Service (LOS)	A		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	730	174
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fнv)	0.883	0.973
Flow Rate (vi), pc/h	899	194
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.20	0.10

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	10.2
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.445
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed ($\mathrm{S}_{\mathrm{R})}$, mi/h	60.3
Prop. Freeway Vehicles in Lane 1 and 2 ($\mathrm{F}=\mathrm{D}$)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	899	Ramp Junction Speed (S), mi/h	60.3
Flow Entering Ramp-Infl. Area (ver12), pc/h	-	Average Density (D), pc/mi/ln	7.5
Level of Service (LOS)	B		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	760	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	468
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.20
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	6.4
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^1]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	642	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	395
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.16
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	5.4
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	730	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	450
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.19
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	6.1
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^2]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing AM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	638	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	392
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.16
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	5.3
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^3]Basic 2020.xuf

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1053	211
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	1296	236
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.32	0.12
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

| Upstream Equilibrium Distance (Leq), ft | - | Density in Ramp Influence Area (DR), pc/mi/ln | 15.5 |
| :--- | :--- | :--- | :--- | :--- |
| Distance to Upstream Ramp (Lup), ft | - | Speed Index (Ms) | 0.318 |
| Downstream Equilibrium Distance (Leq), ft | - | Flow Outer Lanes (voA), pc/h/ln | - |
| Distance to Downstream Ramp (LDown), ft | - | On-Ramp Influence Area Speed (SR), mi/h | 64.5 |
| Prop. Freeway Vehicles in Lane 1 and 2 (Pfm) | 1.000 | Outer Lanes Freeway Speed (So), mi/h | - |
| Flow in Lanes 1 and 2 (v12), pc/h | 1296 | Ramp Junction Speed (S), mi/h | 64.5 |
| Flow Entering Ramp-Infl. Area (VR12), pc/h | 1532 | Average Density (D), pc/mi/ln | 11.9 |
| Level of Service (LOS) | B | | |

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	500	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1115	136
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (fHv)	1373	152
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.32	0.08
Volume-to-Capacity Ratio (v/c)		
Speedand Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	14.2
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.304
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	65.0
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	1373	Ramp Junction Speed (S), mi/h	65.0
Flow Entering Ramp-Infl. Area (VR12), pc/h	1525	Average Density (D), pc/mi/ln	11.7
Level of Service (LOS)	B		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1181	128
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fuv)	0.883	0.973
Flow Rate (vi), pc/h	1454	143
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.33	0.07

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	15.0
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.441
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (Lown), ft	-	Off-Ramp Influence Area Speed (S_{R}, mi/h	60.4
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	1454	Ramp Junction Speed (S), mi/h	60.4
Flow Entering Ramp-Infl. Area (ve12), pc/h	-	Average Density (D), pc/mi/ln	12.0
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1332	217
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHv)	0.883	0.973
Flow Rate (vi), pc/h	1640	242
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.37	0.12
Speed and Densitv		

Speed and Density

Upstream Equilibrium Distance (LeQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	16.6
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.450
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	Off-Ramp Influence Area Speed ($\mathrm{S}_{\mathrm{R})}$, mi/h	60.2
Prop. Freeway Vehicles in Lane 1 and 2 (PFp)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	1640	Ramp Junction Speed (S), mi/h	60.2
Flow Entering Ramp-Infl. Area (ver12), pc/h	-	Average Density (D), pc/mi/ln	13.6
Level of Service (LOS)	B		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1265	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	778
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.32
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	10.6
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^4]HCS
Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1181	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	727
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.30
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	9.9
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1332	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	820
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.34
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	11.1
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^5]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	12/1/2020
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Existing PM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1252	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	770
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.32
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	10.4
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^6]> HCS

Basic 2020.xuf
Generated: 11/29/2021 13:52:29

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	621	234
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	764	261
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.21	0.13
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	11.5
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.311
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.7
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	764	Ramp Junction Speed (S), mi/h	64.7
Flow Entering Ramp-Infl. Area (VR12), pc/h	1025	Average Density (D), pc/mi/ln	7.9
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	500	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	625	93
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	769	104
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.18	0.05
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (Dr), pc/mi/ln	9.2
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.295
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (Sr), mi/h	65.3
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	769	Ramp Junction Speed (S), mi/h	65.3
Flow Entering Ramp-Infl. Area (vR12), pc/h	873	Average Density (D), pc/mi/ln	6.7
Level of Service (LOS)	A		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right
Adjum		

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h		722	101	
Peak Hour Factor (PHF)		0.92	0.92	
Total Trucks, \%		13.20	2.80	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (ftv)		0.883	0.973	
Flow Rate (vi), pc/h		889	113	
Capacity (c), pc/h		4400	2000	
Volume-to-Capacity Ratio (v/c)		0.20	0.06	
Speed and Density				
Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (D)	, pc/mi/ln	10.1
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)		0.438
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voa), pc/h/ln		-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed (S	, mi/h	60.5
Prop. Freeway Vehicles in Lane 1 and 2 (Pfd)	1.000	Outer Lanes Freeway Speed (So), m		-
Flow in Lanes 1 and 2 (v12), pc/h	889	Ramp Junction Speed (S), mi/h		60.5
Flow Entering Ramp-Infl. Area (VR12), pc/h	-	Average Density (D), pc/mi/ln		7.3
Level of Service (LOS)	B			

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	12/8/2020
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	821	196
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fнv)	0.883	0.973
Flow Rate (vi), pc/h	1011	219
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.23	0.11
Speed and Densitv		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	11.1
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.448
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed (S_{R}, mi/h	60.2
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12 $)$, pc/h	1011	Ramp Junction Speed (S), mi/h	60.2
Flow Entering Ramp-Infl. Area (v121), pc/h	-	Average Density (D), pc/mi/ln	8.4
Level of Service (LOS)	B		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	855	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	526
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.22
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	7.1
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^7]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	722	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	444
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.19
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	6.0
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^8]$$
\text { HCS TMN Freeways Version } 7.5
$$

Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	821	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	506
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.21
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	6.9
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^9]
HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening AM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	718	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	442
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.18
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	6.0
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^10]$$
\text { HCS TMN Freeways Version } 7.5
$$

Basic 2020.xuf
Generated: 11/29/2021 14:42:25

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1184	238
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (fHv)	1457	266
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.36	0.13
Volume-to-Capacity Ratio (v/c)		
Speedand Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	17.0
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.322
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.4
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	1457	Ramp Junction Speed (S), mi/h	64.4
Flow Entering Ramp-Infl. Area (VR12), pc/h	1723	Average Density (D), pc/mi/ln	13.4
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	500	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1256	153
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	1546	171
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.36	0.09
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	15.7
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.308
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.8
Prop. Freeway Vehicles in Lane 1 and 2 (PFM)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	1546	Ramp Junction Speed (S), mi/h	64.8
Flow Entering Ramp-Infl. Area (VR12), pc/h	1717	Average Density (D), pc/mi/ln	13.2
Level of Service (LOS)	B		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1328	144
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fhv)	0.883	0.973
Flow Rate (vi), pc/h	1635	161
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.37	0.08
Saplan		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	16.5
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.442
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.4
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (yli2), pc/h	1635	Ramp Junction Speed (S), mi/h	60.4
Flow Entering Ramp-Infl. Area (VR12), pc/h	-	Average Density (D), pc/mi/ln	13.5
Level of Service (LOS)	B		
Copyright © 2021 University of Florida. All Rights Reserved.	HCS		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	$12 / 8 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1500	244
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fнv)	0.883	0.973
Flow Rate (vi), pc/h	1846	273
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.42	0.14
Speed and Densitv		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	18.3
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.453
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed ($\mathrm{S}_{\mathrm{R})}$, mi/h	60.1
Prop. Freeway Vehicles in Lane 1 and 2 ($\mathrm{F}=\mathrm{D}$)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	1846	Ramp Junction Speed (S), mi/h	60.1
Flow Entering Ramp-Infl. Area (ver12), pc/h	-	Average Density (D), pc/mi/ln	15.4
Level of Service (LOS)	B		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1423	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	876
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.37
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	11.9
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^11]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2020
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1328	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	818
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.34
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	11.1
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^12]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1500	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	923
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.38
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	12.5
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^13]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2025
Jurisdiction	D2	Time Period Analyzed	Opening PM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1408	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	866
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.36
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	11.8
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^14]Basic 2020.xuf

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	869	328
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	1070	366
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.30	0.18
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (Dr), pc/mi/ln	14.7
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.316
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	On-Ramp Influence Area Speed (Sr), mi/h	64.6
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	1070	Ramp Junction Speed (S), mi/h	64.6
Flow Entering Ramp-Infl. Area (vr12), pc/h	1436	Average Density (D), pc/mi/ln	11.1
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	500	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	876	131
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (frv)	1078	146
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.26	0.07
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

| Upstream Equilibrium Distance (Leq), ft | - | Density in Ramp Influence Area (DR), pc/mi/ln | 11.9 |
| :--- | :--- | :--- | :--- | :--- |
| Distance to Upstream Ramp (Lup), ft | - | Speed Index (Ms) | 0.299 |
| Downstream Equilibrium Distance (Leq), ft | - | Flow Outer Lanes (voA), pc/h/ln | - |
| Distance to Downstream Ramp (LDown), ft | - | On-Ramp Influence Area Speed (SR), mi/h | 65.1 |
| Prop. Freeway Vehicles in Lane 1 and 2 (Pfm) | 1.000 | Outer Lanes Freeway Speed (So), mi/h | - |
| Flow in Lanes 1 and 2 (v12), pc/h | 1078 | Ramp Junction Speed (S), mi/h | 65.1 |
| Flow Entering Ramp-Infl. Area (VR12), pc/h | 1224 | Average Density (D), pc/mi/ln | 9.4 |
| Level of Service (LOS) | B | | |

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	12/8/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1011	142
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHv)	0.883	0.973
Flow Rate (vi), pc/h	1245	159
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.28	0.08

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	13.2
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.442
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.4
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	1245	Ramp Junction Speed (S), mi/h	60.4
Flow Entering Ramp-Infl. Area (ve12), pc/h	-	Average Density (D), pc/mi/ln	10.3
Level of Service (LOS)	B		

Project Information

Analyst	Justin Garland	Date	12/8/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1150	274
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fнv)	0.883	0.973
Flow Rate (vi), pc/h	1416	306
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.32	0.15
Speedand Densitv		

Speed and Density

Upstream Equilibrium Distance (LeQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	14.6
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.456
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	Off-Ramp Influence Area Speed ($\mathrm{S}_{\mathrm{R})}$, mi/h	60.0
Prop. Freeway Vehicles in Lane 1 and 2 (PFp)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	1416	Ramp Junction Speed (S), mi/h	60.0
Flow Entering Ramp-Infl. Area (ver12), pc/h	-	Average Density (D), pc/mi/ln	11.8
Level of Service (LOS)	B		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1197	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	736
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.31
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	10.0
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^15]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1011	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	622
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.26
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	8.4
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^16]$$
\text { HCS TMN Freeways Version } 7.5
$$

Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1150	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	708
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.30
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	9.6
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^17]$$
\text { HCS TMN Freeways Version } 7.5
$$

Basic 2020.xuf
Generated: 11/29/2021 14:36:15

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design AM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1006	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	619
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.26
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.7
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	8.4
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	A
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^18]$$
\text { HCS TMN Freeways Version } 7.5
$$

Basic 2020.xuf
Generated: 11/29/2021 14:36:45

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 at 129 - EB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	300	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1658	334
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (fHv)	2041	373
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.50	0.19
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	22.3
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.344
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	63.6
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	2041	Ramp Junction Speed (S), mi/h	63.6
Flow Entering Ramp-Infl. Area (VR12), pc/h	2414	Average Density (D), pc/mi/ln	19.0
Level of Service (LOS)	C		

Project Information

Analyst	Justin Garland	Date	$12 / 15 / 2021$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 at 129 - WB Merge		
Geometric Data	Freeway	Ramp	
	2	1	
Number of Lanes (N)	75.0	35.0	
Free-Flow Speed (FFS), mi/h	1500	500	
Segment Length (L) / Acceleration Length (LA), ft	Level	Level	
Terrain Type	-	-	
Percent Grade, \%	Freeway	Right	
Segment Type / Ramp Side			
Adjustment Factors			

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	1758	214
Demand Volume (Vi), veh/h	0.92	0.92
Peak Hour Factor (PHF)	13.20	2.80
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.883	0.973
Heavy Vehicle Adjustment Factor (fHv)	2164	239
Flow Rate (vi), pc/h	4800	2000
Capacity (c), pc/h	0.50	0.12
Volume-to-Capacity Ratio (v/c)		
Speedand Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	21.0
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ms)	0.329
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	On-Ramp Influence Area Speed (SR), mi/h	64.1
Prop. Freeway Vehicles in Lane 1 and 2 (Pfm)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	2164	Ramp Junction Speed (S), mi/h	64.1
Flow Entering Ramp-Infl. Area (VR12), pc/h	2403	Average Density (D), pc/mi/ln	18.7
Level of Service (LOS)	C		

HCS7 Freeway Diverge Report

Project Information

Analyst	Justin Garland	Date	12/8/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 at 129 - EB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	1860	202
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHv)	0.883	0.973
Flow Rate (vi), pc/h	2290	226
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.52	0.11
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (Leq), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	22.1
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.448
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voA), pc/h/ln	-
Distance to Downstream Ramp (Loown), ft	-	Off-Ramp Influence Area Speed (SR), mi/h	60.2
Prop. Freeway Vehicles in Lane 1 and 2 (PFD)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (yli2), pc/h	2290	Ramp Junction Speed (S), mi/h	60.2
Flow Entering Ramp-Infl. Area (VR12), pc/h	-	Average Density (D), pc/mi/ln	19.0
Level of Service (LOS)	C		
Copyright © 2021 University of Florida. All Rights Reserved.	HCS		

Project Information

Analyst	Justin Garland	Date	12/8/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 at 129 - WB Diverge		

Geometric Data

	Freeway	Ramp
Number of Lanes (N)	2	1
Free-Flow Speed (FFS), mi/h	75.0	35.0
Segment Length (L) / Deceleration Length (LD), ft	1500	200
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Highway/CD Roadway	Right

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi), veh/h	2100	342
Peak Hour Factor (PHF)	0.92	0.92
Total Trucks, \%	13.20	2.80
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fнv)	0.883	0.973
Flow Rate (vi), pc/h	2585	382
Capacity (c), pc/h	4400	2000
Volume-to-Capacity Ratio (v/c)	0.59	0.19
Speed and Densitv		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D_{R}), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	24.7
Distance to Upstream Ramp (Lup), ft	-	Speed Index (Ds)	0.462
Downstream Equilibrium Distance (Leq), ft	-	Flow Outer Lanes (voa), pc/h/ln	-
Distance to Downstream Ramp (LDown), ft	-	Off-Ramp Influence Area Speed ($\mathrm{S}_{\mathrm{R})}$, mi/h	59.8
Prop. Freeway Vehicles in Lane 1 and 2 ($\mathrm{F}=\mathrm{D}$)	1.000	Outer Lanes Freeway Speed (So), mi/h	-
Flow in Lanes 1 and 2 (v/12), pc/h	2585	Ramp Junction Speed (S), mi/h	59.8
Flow Entering Ramp-Infl. Area (ver12), pc/h	-	Average Density (D), pc/mi/ln	21.6
Level of Service (LOS)	C		

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	12/1/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 EB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1993	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	1226
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.51
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.4
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	16.7
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^19]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 EB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1860	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	1145
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.48
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.6
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	15.6
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^20]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	12/1/2020
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 WB East of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	Percent Grade, \%	-	
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	2100	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	1292
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.54
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.1
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	17.7
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^21]Basic 2020.xuf

HCS7 Basic Freeway Report

Project Information

Analyst	Justin Garland	Date	$12 / 1 / 2020$
Agency	FDOT	Analysis Year	2045
Jurisdiction	D2	Time Period Analyzed	Design PM
Project Description	I-10 WB West of 129		

Geometric Data

Number of Lanes, In	2	Terrain Type	Level
Segment Length (L), ft	-	Percent Grade, \%	-
Measured or Base Free-Flow Speed	Base	Grade Length, mi	-
Base Free-Flow Speed (BFFS), mi/h	75.0	Total Ramp Density (TRD), ramps/mi	0.33
Lane Width, ft	12	Free-Flow Speed (FFS), mi/h	73.7
Right-Side Lateral Clearance, ft	10		

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

Demand Volume veh/h	1971	Heavy Vehicle Adjustment Factor (fHV)	0.883
Peak Hour Factor	0.92	Flow Rate (Vp), pc/h/ln	1213
Total Trucks, \%	13.20	Capacity (c), pc/h/ln	2400
Single-Unit Trucks (SUT), \%	-	Adjusted Cpacity (cadj), pc/h/ln	2400
Tractor-Trailers (TT), \%	-	Volume-to-Capacity Ratio (v/c)	0.51
Passenger Car Equivalent (ET)	2.000		

Speed and Density

Lane Width Adjustment (fLW)	0.0	Average Speed (S), mi/h	73.4
Right-Side Lateral Clearance Adj. (fRLC)	0.0	Density (D), pc/mi/ln	16.5
Total Ramp Density Adjustment	1.3	Level of Service (LOS)	B
Adjusted Free-Flow Speed (FFSadj), mi/h	73.7		

[^22]Basic 2020.xuf

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	中 ${ }^{\text {c }}$	
Traffic Volume（vph）	15	3	8	21	2	28	9	385	19	53	410	7
Future Volume（vph）	15	3	8	21	2	28	9	385	19	53	410	7
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.957			0.859				0.850		0.997	
Flt Protected		0.972		0.950			0.950			0.950		
Satd．Flow（prot）	0	1716	0	1752	1585	0	1752	3505	1568	1752	3494	0
Flt Permitted		0.805		0.952			0.490			0.457		
Satd．Flow（perm）	0	1421	0	1756	1585	0	904	3505	1568	843	3494	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		9			30				93		2	
Link Speed（mph）		30			30			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	16	3	9	23	2	30	10	418	21	58	446	8

| Shared Lane Traffic（\％） | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Turn Type	Perm	NA	Perm	NA	pm＋pt	NA	Perm	pm＋pt	NA
Protected Phases		4		8	5	2		1	6
Permitted Phases	4		8		2		2	6	
Detector Phase	4	4	8	8	5	2	2	1	6
Switch Phase									
Minimum Initial（s）	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split（s）	39.0	39.0	12.0	12.0	13.0	40.0	40.0	13.0	33.0
Total Split（s）	39.0	39.0	31.0	31.0	22.0	52.0	52.0	22.0	52.0
Total Split（\％）	34．5\％	34．5\％	27．4\％	27．4\％	19．5\％	46．0\％	46．0\％	19．5\％	46．0\％
Maximum Green（s）	33.2	33.2	25.2	25.2	15.2	45.2	45.2	15.2	45.2
Yellow Time（s）	3.8	3.8	3.8	3.8	4.8	4.8	4.8	4.8	4.8
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		5.8	5.8	5.8	6.8	6.8	6.8	6.8	6.8
Lead／Lag					Lead	Lag	Lag	Lead	Lag
Lead－Lag Optimize？					Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	None	None	None	None	None	Min	Min	None	Min
Walk Time（s）	7.0	7.0				7.0	7.0		7.0

	7	\rightarrow		7			4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	26.0	26.0						26.0	26.0		19.0	
Pedestrian Calls (\#/hr)	0	0						0	0		0	
Act Effct Green (s)		7.4		7.5	7.5		26.6	26.3	26.3	29.7	31.6	
Actuated g/C Ratio		0.16		0.17	0.17		0.59	0.58	0.58	0.66	0.70	
v/c Ratio		0.12		0.08	0.11		0.02	0.20	0.02	0.08	0.18	
Control Delay		16.5		19.1	10.0		5.0	11.2	0.1	4.7	6.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		16.5		19.1	10.0		5.0	11.2	0.1	4.7	6.8	
LOS		B		B	A		A	B	A	A	A	
Approach Delay		16.5			13.8			10.5			6.5	
Approach LOS		B			B			B			A	
Queue Length 50th (ft)		5		6	1		1	48	0	6	26	
Queue Length 95th (ft)		23		22	19		5	84	0	17	88	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		1077		1328	1206		910	3290	1477	889	3280	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.03		0.02	0.03		0.01	0.13	0.01	0.07	0.14	
Intersection Summary												
Area Type: Other												
Cycle Length: 113												
Actuated Cycle Length: 45												
Natural Cycle: 95												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.20												
Intersection Signal Delay: 8.9				Intersection LOS: A								
Intersection Capacity Utilization 41.8\%				ICU Level of Service A								
Analysis Period (min) 15												

Splits and Phases: 4: 68th Terrace \& 129

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		\%	$\hat{\beta}$		${ }^{7}$	个 \uparrow	F	${ }^{*}$	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	14	3	21	49	1	72	53	433	32	97	336	17
Future Volume (vph)	14	3	21	49	1	72	53	433	32	97	336	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		0	60		60	250		500	245		0
Storage Lanes	0		0	.		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.924			0.852				0.850		0.993	
Flt Protected		0.982		0.950			0.950			0.950		
Satd. Flow (prot)	0	1674	0	1752	1572	0	1752	3505	1568	1752	3480	0
Flt Permitted		0.846		0.730			0.525			0.445		
Satd. Flow (perm)	0	1442	0	1347	1572	0	968	3505	1568	821	3480	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		23			78				93		5	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		516			277			761			1628	
Travel Time (s)		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	15	3	23	53	1	78	58	471	35	105	365	18

| Shared Lane Traffic (\%) | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

	4			7			4	\uparrow	7		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	26.0	26.0						26.0	26.0		19.0	
Pedestrian Calls (\#/hr)	0	0						0	0		0	
Act Effct Green (s)		8.7		8.7	8.7		26.0	22.0	22.0	28.1	25.2	
Actuated g/C Ratio		0.17		0.17	0.17		0.52	0.44	0.44	0.56	0.51	
v / c Ratio		0.15		0.23	0.23		0.09	0.30	0.05	0.17	0.22	
Control Delay		13.7		22.0	8.0		5.8	14.6	0.2	6.1	12.3	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		13.7		22.0	8.0		5.8	14.6	0.2	6.1	12.3	
LOS		B		C	A		A	B	A	A	B	
Approach Delay		13.7			13.7			12.8			10.9	
Approach LOS		B			B			B			B	
Queue Length 50th (ft)		5		14	0		6	59	0	12	45	
Queue Length 95th (ft)		27		42	30		19	104	2	30	83	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		993		921	1099		854	3102	1398	810	3081	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.04		0.06	0.07		0.07	0.15	0.03	0.13	0.12	
Intersection Summary												
Area Type: Other												
Cycle Length: 113												
Actuated Cycle Length: 49.8												
Natural Cycle: 95												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.30												
Intersection Signal Delay: 12.2				Intersection LOS: B								
Intersection Capacity Utilization 42.9\%				ICU Level of Service A								
Analysis Period (min) 15												

Splits and Phases: 4: 68th Terrace \& 129

	4	T/	4	4	Pa	4	\pm		7		4
Movement	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Lane Configurations			${ }^{1 /}$	44			中 ${ }^{\text {a }}$			*	
Traffic Volume (veh/h)	0	0	59	390	0	0	340	77	123	0	94
Future Volume (Veh/h)	0	0	59	390	0	0	340	77	123	0	94
Sign Control	Stop			Free			Free			Stop	
Grade	0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	64	424	0	0	370	84	134	0	102
Pedestrians											
Lane Width (ft)											
Walking Speed (ft/s)											
Percent Blockage											
Right turn flare (veh)											
Median type				None			None				
Median storage veh)											
Upstream signal (ft)											
pX, platoon unblocked											
vC , conflicting volume	752	964	370			424			737	922	212
vC 1 , stage 1 conf vol											
vC 2 , stage 2 conf vol											
vCu , unblocked vol	752	964	370			424			737	922	212
tC , single (s)	7.6	6.6	4.2			4.2			7.6	6.6	7.0
tC, 2 stage (s)											
tF (s)	3.5	4.0	2.2			2.2			3.5	4.0	3.3
p0 queue free \%	100	100	95			100			54	100	87
cM capacity (veh/h)	248	238	1178			1125			292	252	790
Direction, Lane \#	NB 1	NB 2	NB 3	SB 1	SB 2	NW 1					
Volume Total	64	212	212	247	207	236					
Volume Left	64	0	0	0	0	134					
Volume Right	0	0	0	0	84	102					
cSH	1178	1700	1700	1700	1700	401					
Volume to Capacity	0.05	0.12	0.12	0.15	0.12	0.59					
Queue Length 95th (ft)	4	0	0	0	0	91					
Control Delay (s)	8.2	0.0	0.0	0.0	0.0	26.0					
Lane LOS	A					D					
Approach Delay (s)	1.1			0.0		26.0					
Approach LOS						D					
Intersection Summary											
Average Delay			5.7								
Intersection Capacity Utilization			37.8\%		U Level	Service			A		
Analysis Period (min)			15								

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	中 ${ }^{\text {c }}$	
Traffic Volume（vph）	17	，	9	23	3	31	10	432	22	60	461	7
Future Volume（vph）	17	4	9	23	3	31	10	432	22	60	461	7
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.958			0.862				0.850		0.998	
Flt Protected		0.973		0.950			0.950			0.950		
Satd．Flow（prot）	0	1719	0	1752	1590	0	1752	3505	1568	1752	3498	0
Flt Permitted		0.805		0.930			0.465			0.483		
Satd．Flow（perm）	0	1423	0	1716	1590	0	858	3505	1568	891	3498	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		10			34				87		2	
Link Speed（mph）		30			30			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	18	4	10	25	3	34	11	470	24	65	501	8

Shared Lane Traffic（\％）

Enter Blocked Intersection	No											
Left	Left	Right										
Lane Alignment	Left	0			12			12			15	
Median Width（f）		0			0			0			0	
Link Offset（ft）		16			16			16			16	
Crosswalk Width（ft）												
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	15		9	15		9	15		9	15		9

Turn Type	Perm	NA	Perm	NA	pm＋pt	NA	Perm	pm＋pt	NA
Protected Phases		4		8	5	2		1	6
Permitted Phases	4		8		2		2	6	
Detector Phase	4	4	8	8	5	2	2	1	6
Switch Phase									
Minimum Initial（s）	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split（s）	39.0	39.0	12.0	12.0	13.0	40.0	40.0	13.0	33.0
Total Split（s）	40.0	40.0	40.0	40.0	17.0	59.0	59.0	21.0	63.0
Total Split（\％）	33．3\％	33．3\％	33．3\％	33．3\％	14．2\％	49．2\％	49．2\％	17．5\％	52．5\％
Maximum Green（s）	34.2	34.2	34.2	34.2	10.2	52.2	52.2	14.2	56.2
Yellow Time（s）	3.8	3.8	3.8	3.8	4.8	4.8	4.8	4.8	4.8
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		5.8	5.8	5.8	6.8	6.8	6.8	6.8	6.8
Lead／Lag					Lag	Lead	Lead	Lag	Lead
Lead－Lag Optimize？					Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	None	None	None	None	None	Min	Min	None	Min
Walk Time（s）	7.0	7.0				7.0	7.0		7.0

	4	\rightarrow		\dagger			4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	26.0	26.0						26.0	26.0		19.0	
Pedestrian Calls (\#hr)	0	0						0	0		0	
Act Effct Green (s)		7.5		7.6	7.6		26.0	25.9	25.9	28.7	30.9	
Actuated g/C Ratio		0.17		0.17	0.17		0.59	0.59	0.59	0.65	0.70	
v/c Ratio		0.13		0.09	0.12		0.02	0.23	0.03	0.09	0.21	
Control Delay		16.2		18.9	9.7		5.1	11.0	0.0	5.1	6.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		16.2		18.9	9.7		5.1	11.0	0.0	5.1	6.8	
LOS		B		B	A		A	B	A	A	A	
Approach Delay		16.2			13.4			10.3			6.6	
Approach LOS		B			B			B			A	
Queue Length 50th (ft)		5		6	1		1	54	0	7	30	
Queue Length 95th (ft)		25		23	20		6	92	0	19	97	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		1138		1369	1276		757	3501	1566	945	3498	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.03		0.02	0.03		0.01	0.13	0.02	0.07	0.15	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 44.1												
Natural Cycle: 95												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.23												
Intersection Signal Delay: 8.8				Intersection LOS: A								
Intersection Capacity Utilization 42.5\% Analysis Period (min) 15				ICU Level of Service A								

Splits and Phases: 4: 68th Terrace \& 129

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{7}$	1		${ }^{7}$	个4	F	${ }^{7}$	中 ${ }_{\text {c }}$	
Traffic Volume (vph)	16	4	23	55	2	81	60	488	36	109	378	20
Future Volume (vph)	16	4	23	55	2	81	60	488	36	109	378	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.927			0.853				0.850		0.992	
Flt Protected		0.982		0.950			0.950			0.950		
Satd. Flow (prot)	0	1679	0	1752	1573	0	1752	3505	1568	1752	3477	0
Flt Permitted		0.840		0.727			0.500			0.455		
Satd. Flow (perm)	0	1436	0	1341	1573	0	922	3505	1568	839	3477	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		25			88				87		6	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		516			277			761			1628	
Travel Time (s)		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	17	4	25	60	2	88	65	530	39	118	411	22

| Shared Lane Traffic (\%) | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Turning Speed (mph)	Perm	NA	Perm	NA	pm+pt	NA	Perm	pm+pt	NA	
Turn Type		4	8	8	5	2		1	6	
Protected Phases	4			8		2		2	6	
Permitted Phases	4	4	8	8	5	2	2	1	6	
Detector Phase	4									

Switch Phase									
Minimum Initial (s)	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split (s)	39.0	39.0	12.0	12.0	13.0	40.0	40.0	13.0	33.0
Total Split (s)	42.0	42.0	42.0	42.0	19.0	54.0	54.0	24.0	59.0
Total Split (\%)	35.0\%	35.0\%	35.0\%	35.0\%	15.8\%	45.0\%	45.0\%	20.0\%	49.2\%
Maximum Green (s)	36.2	36.2	36.2	36.2	12.2	47.2	47.2	17.2	52.2
Yellow Time (s)	3.8	3.8	3.8	3.8	4.8	4.8	4.8	4.8	4.8
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		5.8	5.8	5.8	6.8	6.8	6.8	6.8	6.8
Lead/Lag					Lag	Lead	Lead	Lag	Lead
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Recall Mode	None	None	None	None	None	Min	Min	None	Min
Walk Time (s)	7.0	7.0				7.0	7.0		7.0

	\rangle	\rightarrow		7			4	\uparrow	P	t	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	26.0	26.0						26.0	26.0		19.0	
Pedestrian Calls (\#/hr)	0	0						0	0		0	
Act Effct Green (s)		8.9		8.9	8.9		26.5	22.4	22.4	26.4	24.3	
Actuated g/C Ratio		0.18		0.18	0.18		0.54	0.45	0.45	0.53	0.49	
v/c Ratio		0.16		0.25	0.25		0.10	0.33	0.05	0.20	0.25	
Control Delay		13.4		21.8	7.8		6.1	14.1	1.0	7.5	13.1	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		13.4		21.8	7.8		6.1	14.1	1.0	7.5	13.1	
LOS		B		C	A		A	B	A	A	B	
Approach Delay		13.4			13.4			12.4			11.9	
Approach LOS		B			B			B			B	
Queue Length 50th (t)		5		15	1		7	66	0	14	51	
Queue Length 95th (t)		29		45	31		21	111	5	34	97	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (ft)				60			250		500	245		
Base Capacity (vph)		1083		1006	1202		765	3232	1452	905	3396	
Starvation Cap Reductn		0		0	0		0	,	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.04		0.06	0.07		0.08	0.16	0.03	0.13	0.13	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 49.4												
Natural Cycle: 95												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.33												
Intersection Signal Delay: 12.4				Intersection LOS: B								
Intersection Capacity Utilization 44.9\%				ICU Level of Service A								

Splits and Phases: 4: 68th Terrace \& 129

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	性	
Traffic Volume（vph）	24	6	13	32	5	44	15	606	31	83	646	10
Future Volume（vph）	24	6	13	32	5	44	15	606	31	83	646	10
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.960			0.864				0.850		0.998	
Flt Protected		0.973		0.950			0.950			0.950		
Satd．Flow（prot）	0	1723	0	1752	1594	0	1752	3505	1568	1752	3498	0
Flt Permitted		0.799		0.870			0.381			0.385		
Satd．Flow（perm）	0	1415	0	1605	1594	0	703	3505	1568	710	3498	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		14			48				87		2	
Link Speed（mph）		30			30			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	26	7	14	35	5	48	16	659	34	90	702	11

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	47	0	35	53	0	16	659	34	90	713	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		0			12			12			15	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA		pm＋pt	NA	Perm	pm＋pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		5	2	2	1	6	
Switch Phase												
Minimum Initial（s）	6.0	6.0		6.0	6.0		6.0	15.0	15.0	6.0	15.0	
Minimum Split（s）	39.0	39.0		12.0	12.0		13.0	40.0	40.0	13.0	33.0	
Total Split（s）	41.0	41.0		41.0	41.0		17.0	60.0	60.0	19.0	62.0	
Total Split（\％）	34．2\％	34．2\％		34．2\％	34．2\％		14．2\％	50．0\％	50．0\％	15．8\％	51．7\％	
Maximum Green（s）	35.2	35.2		35.2	35.2		10.2	53.2	53.2	12.2	55.2	
Yellow Time（s）	3.8	3.8		3.8	3.8		4.8	4.8	4.8	4.8	4.8	
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust（s）		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time（s）		5.8		5.8	5.8		6.8	6.8	6.8	6.8	6.8	
Lead／Lag							Lag	Lead	Lead	Lag	Lead	
Lead－Lag Optimize？							Yes	Yes	Yes	Yes	Yes	
Vehicle Extension（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Recall Mode	None	None		None	None		None	Min	Min	None	Min	
Walk Time（s）	7.0	7.0						7.0	7.0		7.0	

	4	\rightarrow		7			4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	26.0	26.0						26.0	26.0		19.0	
Pedestrian Calls (\#hr)	0	0						0	0		0	
Act Effct Green (s)		8.2		8.2	8.2		27.4	24.0	24.0	31.9	34.3	
Actuated g/C Ratio		0.17		0.17	0.17		0.58	0.50	0.50	0.67	0.72	
v/c Ratio		0.19		0.13	0.17		0.03	0.37	0.04	0.14	0.28	
Control Delay		18.1		21.4	10.1		5.1	12.3	0.4	5.5	6.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		18.1		21.4	10.1		5.1	12.3	0.4	5.5	6.8	
LOS		B		C	B		A	B	A	A	A	
Approach Delay		18.1			14.6			11.5			6.7	
Approach LOS		B			B			B			A	
Queue Length 50th (ft)		9		9	1		2	82	0	10	47	
Queue Length 95th (ft)		36		33	27		7	134	2	25	143	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		1099		1243	1246		682	3402	1525	820	3437	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.04		0.03	0.04		0.02	0.19	0.02	0.11	0.21	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 47.6												
Natural Cycle: 95												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.37												
Intersection Signal Delay: 9.5				Intersection LOS: A								
Intersection Capacity Utilization 48.4\% Analysis Period (min) 15				ICU Level of Service A								

Splits and Phases: 4: 68th Terrace \& 129

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$	F		${ }^{*}$	个 \uparrow	F	*	中 ${ }_{\text {c }}$	
Traffic Volume (vph)	22	6	32	77	3	113	84	684	50	153	531	27
Future Volume (vph)	22	6	32	77	3	113	84	684	50	153	531	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.928			0.854				0.850		0.993	
Flt Protected		0.982		0.950			0.950			0.950		
Satd. Flow (prot)	0	1681	0	1752	1575	0	1752	3505	1568	1752	3480	0
Flt Permitted		0.838		0.714			0.396			0.302		
Satd. Flow (perm)	0	1435	0	1317	1575	0	730	3505	1568	557	3480	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		35			123				149		5	
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		516			277			761			1628	
Travel Time (s)		11.7			6.3			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	24	7	35	84	3	123	91	743	54	166	577	29

| Shared Lane Traffic (\%) | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

| | | | | | | | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Splits and Phases: $\quad 4: 68$ th Terrace \& 129

APPENDIX C

Existing Signal Timings

SIGNAL RETIMING REPORT Vehicle and Pedestrian Interval Updates

SUWANNEE COUNTY

SR 10 (US 90), SR 249, SR 51 (US 129) and SR 20 (US 27) in Suwannee County

Contract Number C-9837
FPN 211083-2-32
HDR No 237013
Prepared for:

District 2

Prepared by:
HDR Orlando, Florida

July 31, 2015

Engineer of Record: Suraj Pamulapati
P.E. No 69277

PROFESSIONAL ENGINEER ENDORSEMENT

I hereby certify that I am a registered professional engineer in the State of Florida practicing with HDR Engineering, Inc., a corporation, authorized to operate as an engineering business, Certification of Authorization No. 00004213, by the State of Florida Department of Professional Regulation, Board of Professional Engineers, and I have prepared or approved the methodology, analysis, conclusions and recommendations hereby reported for:

PROJECT: SR 10 (US 90), SR 249, SR 51 (US 129) and SR 20 (US 27) in
Suwannee County - Vehicle and Pedestrian Intervals Update Report

LOCATION: Suwannee County, Florida
CLIENT: FDOT District Two

I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering, as applied through professional judgment and experience.

NAME: \quad Suraj Pamulapati, PE
P.E. NO: 69277

DATE: July 31, 2015

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION - DISTRICT TWO
Vehicle and Pedestrian Intervals Update - SR 10 (US 90), SR 249, SR 51 (US 129) and SR 20 (US 27) in Suwannee County FiN 211083-2-32, C-9837

Designed By:	S.P.						
Date:	$7 / 30 / 2015$						
Checked By:	R.A.A.						
Date:	$7 / 30 / 2015$	\quad	Roadway ID 37040000		Mile Post		Node
:---	:---	:---	:---	:---			
Sig ID		Controlfer	Econolite 2070 ATC	System ID			
Maj. Street	US 129	Orientation	N-S	SOP			
Min. Street	72nd Trace	Orientation	E-W	10			

Pedestrians									
Movernent \# (Controller Phase Ø)	1	2	3	4	5	6	7	8	Notes
Direction	SBL	NB	WBL.	EB	NBL	SB	EBL	WB	
Speed Limit (mph)	45	45	35	35	45	45	35	35	
Vehicle Traversed Width	104	104	118	120	94	102	116	120	
Ped-X (curb to curb)		95							
Crossing Time		28							
Ped-X (button to curb)		34							
Ped-X (ped det to far curb)		129							
Crossing Time		43							
Approach Grades	0.0\%	-1.2\%	-1.3\%	-0.7\%	-1.2\%	0.0\%	-0.7\%	-1.3\%	

Notes:

1) Intersection operates in free mode at all times

Controller Timings Leqend
\square
$\quad \begin{array}{l}\text { Updated timings } \\ \text { Existing timings }\end{array}$

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION - DISTRICT TWO
Vehicle and Pedestrian Intervals Update - SR 10 (US 90), SR 249, SR 51 (US 129) and SR 20 (US 27) in Suwannee County FIN 211083-2-32, C-9837

Roadway ID	37040000	Mile Post		Node	13
Sig ID.		Controller	MTS 170EX	System ID	
Maj. Street	US 129	Orientation	N-S	SOP	12
Min. Street	70th Street	Orientation	E-W		

Pedestrians									
Movement \# (Controller Phase Ø)	1	2	3	4	5	6	7	8	Notes
Direction		SB		WB	SBL	NB			
Speed Limit (mph)		45		30	45	45			
Vehicle Traversed Width		114		108	115	110			
Ped-X (curb to curb)				84		57			
Crossing Time				' 24		17			
Ped-X (button to curb)				17		12			
Ped-X (ped det to far curb)				101		69			
Crossing Time				34		23			
Approach Grades		-2.1\%		-3.5\%	-2.1\%	0.4\%			

Movement \# Controller Timings (seconds)									
Movement \# (Controller Phase Ø)	1	2	3	4	5	6	7	8	Notes
Direction		SB		WB	SBL	NB			
- Turn Type				Perm	Proutiperm				
Min Green		18		6	6	18			
Ext		4.5		4.0	4.0	4.5			
Yellow Change		5.0		3.9	5.0	5.0			
Red Clearance		2.0		2.0	2.0	2.0			
Max I		45		30	15	45			
Max II		0		0	0	0			
Walk				7		7			
Flashing Don't Walk				24		17			
Min Splits		25.0		37.0	13.0	31.0			
Detector Memory									
Det. Cross Switch.									
Recall		Min				Min			
CNA									
Coord Phase									

Non-Coordination Timings (seconds)													
Plan	Pattern	Status	Splits									Offset	
											Length	A	

'Notes:

1) Intersection operates in free mode at all times
2) $P 6$ is on Recall mode currently in field

Controller Timings Legend

Updated timings
Existing timings

STATE OF FLORIDA
DEPARTMENT OF TRANSPORTATION - DISTRICT TWO
Vehicle and Pedestrian Intervals Update - SR 10 (US 90), SR 249, SR 51 (US 129) and SR 20 (US 27) in Suwannee County FIN 211083-2-32, C-9837

Designed By:	S.P.							
Date:	$7 / 30 / 2015$							
Checked By:	R.A.A.							
Date:	$7 / 30 / 2015$	\quad	Roadway ID	37040000		Mile Post		Node
:---	:---	:---	:---	:---	:---			
Sig ID		Controller	MTS 170ES	System ID				
Maj. Street	US 129	Orientation	N-S	SOP				
Min. Street	68th Terrace	Orientation	E-W	7				

Notes:

1) Intersection operates in free mode at all times

Controller Timings Leqend

APPENDIX D

Crash Number	Location Mile Post	Roadway ld	Crash Date	Crash Year	On Road	Intersecting Road	First Harmful Event	Manner Of Collision	Light Condition	Weather Condition	Surface Condition	Junction	Site Location	Alcohol Drugs Involvement	Number of Fatalities	Number of Injured	Total Crash Damage Amount	Crash Status
833028580	0	37120011	11/26/2017	2017	110	US 129	Motor venicle in Transport	Front To Rear	Dayilight	clear	Dry	Entrance/Exit Ramp	Exit Ramp	No		3		Q/c Completed-Loc Verified
855295520	0	37120010	8/72017	2017	110	US 129	Motor venicle in Transport	Front To Rear	Dayight	Clear	Dry	Entrance/Exit Ramp	Exit Ramp	No			500	Q/c completed-Loc Verified
855598880	0	37120011	7/24/2017	2017	110	US 129	Motor vehicle in Transport	Front To Rear	Dayilight	clear	Dry	Entrance/Exit Ramp	Exit Ramp	No				Q/c Completed-Loc Verified
820771250	0.014	37120011	6/6/2016	2016	SR8	US 129	Motor Venicle In Transoort	Front To Rear	Dayight	Rain	wet	Entrance/Exit Ramp	Exit Ramp	No		1		a/c Completed-Loc Verified
872398420	0.019	37120010	8/31/2018	2018	110	US 129	Motor Vehicle In Transport	Front To Rear	Daylight	Cloudy	Dry	Non-Junction	Ext Ramp	No			500	a/c Completed-Loc Verified
857869520	0.028	37120012	4/22/2016	2016	110	US 129	Motor vehicle in Transport	Other (See Narrative)	Dayight	Rain	wet	Entrance/Exit Ramp	Entrance Ramp	No				Q/c completed-Loc Verified
852377880	0.038	37120012	2/5/2016	2016	110	US 129	Overtur/Rollover	Other (See Narrative)	Dayilight	clear	Dry	Entrance/Exit Ramp	Entrance Ramp	No		1		a/c completed-Loc Verified
854363590	0.057	37120011	12/29/2016	2016	110	US 129	Jacknnife	Other (See Narrative)	Dayight	Cloudy	Wet	Entrance/Exit Ramp	Exit Ramp	No				Q/c Completed-Loc Verified
854901720	0.095	37120011	6/2/2017	2017	110	US 129	Motor Vehicle in Transport	Front To Rear	Daylight	clear	Dry	Entrance/Exit Ramp	Entrance Ramp	No			500	a/c Completed-Loc Verified
880143870	0.115	37120009	10/20/2018	2018	110	Us 129	Motor Vehiciel I Transport	Sideswipe, Same Direction	Daylight	clear	Dry	Non-Junction	Entrance Ramp	No			500	a/c Completed-Loc Verified
853406570	0.201	37120009	6/18/2016	2016	SR8	US 129	Overtur/Rollover	Other (See Narrative)	Dark-Lighted	clear	Dry	Entrance/Exit Ramp	Entrance Ramp	No		1		a/c Completed-Loc Verified
851750640	0.218	37120010	12/2/2015	2015	110	US 129	Motor Venicle In Transoort	Front To Rear	Dayilight	Cloudy	Dry	Entrance/Exit Ramp	Entrance Ramp	No		1	500	Q/C Completed-Loc Verified
888591040	0.219	37120010	7/23/2015	2015	110	Us 129	Motor Vehicle In Transport	Front To Rear	Daylight	clear	Dry	Entrance/Exit Ramp	Entrance Ramp	No				a/c Completed - Lo Verified
851767860	0.223	37120010	6/20/2016	2016	110	US 129	Motor Vehiciel I Transport	Angle	Daylight	clear	Dry	Entrance/Exit Ramp	Exit Ramp	No		1		a/c Completed-Loc Verified
853001500	0.223	37120010	5/5/2016	2016	110	US 129	Motor Venicle In Transoort	Front To Rear	Dayilight	clear	Dry	Entrance/Exit Ramp	Exit Ramp	No		1		a/c Completed-Loc Verified
854646870	0.223	37120010	2/17/2017	2017	SR8	US 129	Motor Vehicie in Transport	Front To Rear	Dayight	Clear	Dry	Non-Junction	Ext Ramp	Alc		1		a/c Completed - Loc Verified
819515270	14.208	37120000	1/3/2018	2018	SR8	WB ENT from Sb SR 51 L	Guardrail face	Other (See Narative)	Daylight	Sleet, Hail, freezing Rain	Ice/frost	Through Roadway	Bridge	No				Q/C completed-Loc Verified
855850380	14.238	37120000	11/10/2017	2017	SR8	мм 282	Motor Vehicle In Transoort	Front To Rear	Dayight	clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No				a/c completed-Loc Verified
856674040	14.35	37120000	8/10/2016	2016	110	us 129	Guardrail Face	Other (See Narrative)	Dayight	Rain	Wet	Non-Junction	Not At Intersection/R/R/8ridge	No		1		a/c Completed - Loc Verified
871810670	14.361	37120000	3/9/2018	2018	110	Us 129	Guardrail face	Other (See Narrative)	Dayight	Clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No				a/c Completed-Loc Verified
872531550	14.483	37120000	10/8/2018	2018	110	us 129	Motor Venicle In Transoort	Front To Rear	Dayilight	cloudy	Dry	Non-Junction	Not At Intersection/Rx/8/ridge	No				Q/C Completed-Loc Verified
837616220	14.512	37120000	9/22/2014	2014	SR8	Us 129	Motor Venicle In Transport	Front To Rear	Dark-Not Lighted	clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No		${ }^{3}$		Q/C Completed-Loc Verified
855134560	14.531	37120000	6/28/2017	2017	SR8	Us 129	Guardrail face	Other (See Narrative)	Daylight	Rain	Wet	Non-Junction	Not At Intersection/R/8/8ridge	No		1		a/c Completed-Loc Verified
880143990	14.531	37120000	11/4/2018	2018	110	Us 129	Guardrail face	Other (See Narrativ)	Daylight	Rain	wet	Non-Junction	Not At Intersection/Rr/8/ridge	No				Q/c completed-Loc Verified
853928290	14.58	37120000	11/27/2016	2016	110	us 129	Motor vehicle in Transport	Front To Rear	Dayight	clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No				Q/c Completed-Loc Verified
855186440	14.619	37120000	7/21/2017	2017	SR8	Us 129	Guardrail face	Other (See Narrativ)	Daylight	Rain	Wet	Non-Junction	Not At Intersection/Rx/8/ridge	No				a/c Completed-Loc Verified
851732040	14.628	37120000	11/28/2015	2015	110	Us 129	Motor Venicil In Transoort	Angle	Dayight	Cloudy	Dry	Non-Junction	Not At Intersection/Rx/8/ridge	No				a/c Completed-Loc Verified
836629790	14.675	37120000	1/27/2014	2014	SR8	MILE Marker \#282	Overtur/Rollover	Other (See Narrative)	Dayight	Clear	Dry	Non-Junction	Not At Intersection/Pr/8/ridge	No				Q/c completed-Loc Verified
853406760	14.675	37120000	7/17/2016	2016	SR8	мм 282	Guardrail face	Other (See Narrative)	Dusk	Rain	wet	Non-Junction	Not At Intersection/R/x/8ridge	No			500	a/c Completed - Loc Verified
853560080	14.675	37120000	10/25/2016	2016	110	MM 282	Guardrail face	Other (See Narrative)	Daylight	Clear	Dry	Non-Junction	Not At Intersection/R/R/8ridge	No		1		a/c Completed - Loc Verified
85320550	14.676	37120000	4/25/2016	2016	SR8	Us 129	Motor Vehicil In Transort	Front To Rear	Dark-Not Lighted	Clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No		2		a/c Completed-Loc Verified
856468800	14.676	37120000	1/26/2017	2017	SR8	us 129	Curb	Other (See Narrative)	Daylight	Cloudy	Wet	Non-Junction	Not At Intersection/R/P/8ridge	No				a/c Completed-Loc Verified
871684890	14.68	37120000	6/8/2018	2018	110	Eb ent from nb Sr 51 R	Guardrail face	Other (See Narrative)	Dayight	Rain	Wet	Non-Junction	Not At Intersection/Rr/8/ridge	No				Q/C Completed-Loc Verified
837519580	14.681	37120000	5/31/2014	2014	SR8	Us 129	Guardrail face	Other (See Narrative)	Dark-Not Lighted	Rain	Wet	Non-Junction	Not At Intersection/Rr/8/ridge	No		5	500	a/c completed-Loc Verified
872658430	14.681	37120000	10/8/2018	2018	110	us 129	Curb	Other (See Narrative)	Daylight	Cloudy	Wet	Non-Junction	Not At Intersection/R/P/8ridge	No			50	a/c Completed-Loc Verified
871067210	14.695	37120000	12/7/2017	2017	110	us 129	Tree (Standing)	Other (See Narrative)	Daylight	Rain	Wet	Non-Junction	Not At Intersection/Rx/8ridge	No		1		a/c Completed - Loc Verified
854991370	14.705	37120000	6/3/2017	2017	110	CR136	Tree (Standing)	Other (See Narrative)	Dayilight	clear	Dry	Non-Junction	Not At Intersection/Rx/8/ridge	No		1		Q/C Completed-Loc Verified
853707920	14.738	37120000	11/10/2016	2016	SR8	мм 282	Motor Vehicle In Transoort	Sideswipe, Same Direction	Dayight	clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No				Q/C Completed-Loc Verified
871780420	14.738	37120000	5/4/2018	2018	SR8	MLIE MARKER \#282	Fence	Other (See Narrative)	Daylight	Clear	Dry	Non-Junction	Not At Intersection/Rr//ridige	No		1		a/c Completed-Loc Verified
837500160	14.775	37120000	2/26/2014	2014	110	MLIE MARKEE \#282	Guardrail face	Other (See Narrative)	Daylight	Rain	Wet	Non-Junction	Not At Intersection/R/P/8ridge	No				a/c Completed-Loc Verified
838264550	14.781	37120000	2/9/2015	2015	110	us 129	Other Post, Pole, Or Support	Other (See Narrative)	Dark-Not Lighted	cloudy	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No		1	500	Q/C Completed-Loc Verified
845611010	14.781	37120000	6/30/2015	2015	110	us 129	Motor Venicle In Transoort	Front To Rear	Dayight	Rain	wet	Non-Junction	Not At Intersection/Rx/8/ridge	No				Q/C Completed-Loc Verified
848883600	14.781	37120000	10/19/2015	2015	SR8	us 129	Motor Vehicle In Transport	Sideswipe, Same Direction	Daylight	Clear	Dry	Non-Junction	Not At Intersection/Rr//ridge	No			200	a/c Completed-Loc Verified
83795940	14.881	37120000	9/5/2015	2015	110	us 129	Motor Vehiciel I Transport	Front To Rear	Daylight	clear	Dry	Non-Junction	Not At Intersection/R//8ridge	No		1		a/c Completed-Loc Verified
871615970	14.889	37120000	1/8/2018	2018	SR8	Eb ent rrom nb Sr 51 R	Motor Venicle In Transoort	Sideswipe, Same Direction	Dayilight	clear	Dry	Entrance/Exit Ramp	Not At Intersection/Rr/8/ridge	No				a/c Completed - Loc Verified
853795320	26.942	37040000	11/29/2016	2016	Us 129	68TH TER	Motor Vehicle in Transport	Sideswipe, Same Direction	Daylight	Clear	Dry	Non-Junction	Not At Intersection/Rr//ridge	No			500	a/c Completed - Loc Verified
837610040	26.985	37040000	2/13/2014	2014	Us 129	68th terr nw	Motor vehicil In Transoort	Front To Rear	Daylight	Clear	Dry	Intersection-Related	At intersection	No		1		a/c Completed-Loc Verified
853927920	26.985	37040000	10/14/2016	2016	Us 129	68TH Ter	Motor Vehiciel I Transport	Front To Rear	Daylight	clear	Dry	Intersection-Related	Influenced By Intersection	No				a/c Completed-Loc Verified
836438780	26.989	37040000	1/11/2014	2014	Us 129	9 68TH Terr nw	Motor Vehicle in Transport	Angle	Dark-Not Lighted	Cloudy	Wet	Intersection	At intersection	No		2		Q/C Completed - Loc Verified
83758836	26.989	37040000	7/10/2014	2014	US 129	68TH Terr nw	Motor Venicle In Trasport	Angle	Dayilight	clear	Dry	Intersection	At intersection	No		2		a/c Completed-Loc Verified
837955840	26.989	37040000	7/24/2015	2015	us 129	68TH Terr nw	Motor Vehicle In Transport	Angle	Daylight	Rain	Wet	Intersection	At intersection	No				a/c Completed-Loc Verified
848848910	26.989	37040000	8/11/2015	2015	us 129	68TH Terr nw	Motor Vehicle In Transport	Angle	Dark-Lighted	cloudy	Dry	Intersection	At intersection	No			500	a/c Completed-Loc Verified
853363550	26.989	37040000	5/25/2016	2016	Us 129	68TH TER	Motor Vehicle in Transport	Other (See Narrative)	Dusk	Clear	Dry	Intersection	At intersection	Alc				a/c Completed - Loc Verified
855180460	26.989	37040000	9/29/2017	2017	US 129	968 TH Ter	Motor Venicice in Transoort	Other (See Narrativ)	Daylight	clear	Dry	Non-Junction	At intersection	No				Q/c completed-Loc Verified
85688570	26.989	37040000	5/15/2018	2018	Us 129	9 68TH Ter	Motor Vehicle In Transport	Angle	Daylight	Rain	wet	Intersection	At intersection	No		${ }^{3}$	500	a/c Completed-Loc Verified
87887658	26.989	37040000	12/26/2018	2018	US 129	9 68TH Ter	Motor Vehicle In Transoort	Other (See Narrative)	Dark-lighted	clear	Dry	Drivewa/Alley Access Related	Driveway Access	No		5		Q/c completed-Loc Verified
88008892	26.989	37040000	11/30/2018	2018	US 129	68TH Ter	Motor Venicice In Transoort	Angle	Daylight	Clear	Dry	Intersection	At intersection	No		1		a/c completed-Loc Verified
855850670	26.998	37040000	1/6/2018	2018	Us 129	68TH TER	Overtur//Rollover	Other (See Narrative)	Dark-Lighted	Clear	Dry	Non-Junction	Not At Intersection/Rrx/ridge	Alc				a/c Completed - Loc Verified
832264390	27.046	37040000	11/22/2014	2014	US 129	68th terr nw	Motor Vehicle In Transport	Angle	Daylight	Rain	Wet	Drivewa/Alley Access Related	Driveway Access	No				a/c Completed-Loc Verified
85135970	27.046	37040000	9/12/2015	2015	Us 129	68th terr nw	Motor Vehicle in Transport	Rear 7 O Side	Daylight	Rain	Wet	Drivewa/Alley Access Related	Driveway Access	No				a/c Completed- Loc Verified
854991310	27.065	37040000	5/21/2017	2017	US 129	68TH Ter	Motor Venicil In Transoort	Angle	Dayight	Clear	Dry	Crosover-Related	Not At Intersection/Rr/8/ridge	No				a/c completed-Loc Verified
837799950	27.076	37040000	6/72014	2014	Us 129	68th terr nw	Motor Vehiciel I Transport	Angle	Daylight	Clear	Dry	Intersection	Driveway Access	No				a/c Completed - Loc Verified
82038460	27.088	37040000	1/5/2018	2018	Us 129	68TH Ter	Motor Venicle In Transoort	Front To Rear	Dayilight	clear	Dry	Intersection-Related	Driveway Access	No			50	a/c Completed-Loc Verified
85225530	27.88	37040000	8/3/2016	2016	US 129	68TH Ter	Motor Venicle In Transport	Other (See Narrative)	Dayilight	clear	Dry	Non-Junction	Not At Intersection/Rr/8/ridge	No			100	a/c Completed-Loc Verified
871780390	27.108	37040000	4/25/2018	2018	Us 129	68TH TeR	Pedestrian	Other (See Narrative)	Dark-Lighted	Clear	Dry	Non-Junction	Not At Intersection/Rr/8ridge	No				a/c Completed - Lo Verified
87810680	27.15	37040000	3/9/2018	2018	Us 129		Motor Vehicie In Transport	Angle	Daylight	Clear	Dry	Intersection-Related	Driveway Access	No				a/c Completed - Loc Verified
837519060	27.18	37040000	1/26/2014	2014	Us 129	68TH Terr nw	Curb	Other (See Narrative)	Dark-Lighted	clear	Dry	Non-Junction	Not At Intersection/Rrx/8ridge	${ }^{\text {Alc }}$				a/c Completed- Loc verified
83750088	27.181	37040000	7/11/2014	2014	Us 129		Motor venicle in Transport	Angle	Dayight	clear	Dry	Crossover-Reated	Driveway Access	No				Q/c Completed-Loc Verified
825488570	27.182	37040000	3/29/2014	2014	Us 129	9 6th terr nw	Ditch	Front To front	Dark-Lighted	Cloudy	Wet	Other (See Narative)	Not At Intersection/R/P/8ridge	No			500	a/c Completed-Loc Verified
825488990	27.182	37040000	6/16/2014	2014	US 129	68th terr nw	Motor Venicice In Transoort	Sideswipe, Same Direction	Dark-Lighted	clear	wet	Non-Junction	Not At Intersection/Rr/8/ridge	No			2	Q/c completed-Loc Verified
87239950	27.189	37040000	7/14/2018	2018	Us 129		Overtur/Rollover	Other (See Narrative)	Dawn	clear	Dry	Non-Junction	Driveway Access	No		1		Q/c Completed-Loc Verified
845413510	27.239	37040000	4/28/2015	2015	Us 129		Motor Vehicie in Transport	Angle	Dark-Lighted	Cloudy	Dry	Driveway/Alley Access Related	Driveway Access	Alc		${ }^{3}$		a/c Completed - Loc Verified
845610950	27.239	37040000	6/24/2015	2015	us 129		Motor Vehicle in Transport	Angle	Daylight	clear	Dry	Driveway/Alley Access Related	Driveway Access	No		2		a/c Completed- Loc Verified
853559820	27.239	37040000	9/7/2016	2016	US 129		Pealaccle	Other (See Narrative)	Dawn	Clear	Dry	Driveway/Alley Access Reatad	Driveway Access	No		1	305	a/c Completed-Loc Verified

FDDT\} $\quad 1-10$ at SR 51 Interchange Operations Analysis Report

I-10 Segmentation

FDDTV I-10 at SR 51 Interchange Operations Analysis Report

Ramp Segmentation
Appendix D Figure 2

FDDT\} I-10 at SR 51 Interchange Operations Analysis Report

APPENDIX E

Build Alternative Concept Maps

APPENDIX F

Build Alternative Opening Year 2025 and Design Year 2045 Synchro Outputs

	4	\rightarrow		7			4		p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		${ }^{7}$	\uparrow		${ }^{1}$	44	「	${ }^{1}$	中\%	
Traffic Volume (vph)	17	4	9	23	3	31	10	433	22	60	461	7
Future Volume (vph)	17	4	9	23	3	31	10	433	22	60	461	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.958			0.862				0.850		0.998	
Flt Protected		0.973		0.950			0.950			0.950		
Satd. Flow (prot)	0	1719	0	1752	1590	0	1752	3505	1568	1752	3498	0
Flt Permitted		0.805		0.851			0.465			0.399		
Satd. Flow (perm)	0	1423	0	1570	1590	0	858	3505	1568	736	3498	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		10			34				159		2	
Link Speed (mph)		35			35			45			45	
Link Distance (ft)		516			277			761			1628	
Travel Time (s)		10.1			5.4			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	18	4	10	25	3	34	11	471	24	65	501	8
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	32	0	25	37	0	11	471	24	65	509	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			15	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Position(ft)	0	0		0	0		0	0	0	0	0	
Detector 1 Size(ft)	20	6		20	6		20	6	20	20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex			Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	15.0	15.0	6.0	15.0	
Minimum Split (s)	25.0	25.0		25.0	25.0		12.8	25.2	25.2	12.8	25.2	
Total Split (s)	25.0	25.0		25.0	25.0		14.0	31.0	31.0	14.0	31.0	
Total Split (\%)	35.7\%	35.7\%		35.7\%	35.7\%		20.0\%	44.3\%	44.3\%	20.0\%	44.3\%	
Maximum Green (s)	18.6	18.6		18.6	18.6		7.2	24.2	24.2	7.2	24.2	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.8	4.8	4.8	4.8	4.8	
All-Red Time (s)	2.4	2.4		2.4	2.4		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.4		6.4	6.4		6.8	6.8	6.8	6.8	6.8	
Lead/Lag							Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	
Pedestrian Calls (\#hr)	0	0		0	0			0	0		0	
Act Efft Green (s)		7.1		7.1	7.1		49.1	49.1	49.1	51.9	54.6	
Actuated g/C Ratio		0.10		0.10	0.10		0.70	0.70	0.70	0.74	0.78	
V / c Ratio		0.21		0.16	0.19		0.02	0.19	0.02	0.10	0.19	
Control Delay		25.2		30.4	14.3		9.6	7.8	0.0	2.6	2.2	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		25.2		30.4	14.3		9.6	7.8	0.0	2.6	2.2	
LOS		C		C	B		A	A	A	A	A	
Approach Delay		25.2			20.8			7.5			2.2	
Approach LOS		C			C			A			A	
Queue Length 50th (ft)		9		10	1		2	53	0	4	33	
Queue Length 95th (ft)		32		31	26		10	92	0	20	54	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		385		417	447		659	2456	1146	654	2730	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.08		0.06	0.08		0.02	0.19	0.02	0.10	0.19	
Intersection Summary												

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 48 (69\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.21
Intersection Signal Delay: 6.1 Intersection LOS: A
Intersection Capacity Utilization 43.0\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: $4: 129$ \& 68th

	\checkmark			\uparrow							\％
Lane Group	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations				ヶ个中	「	＊	个4		＊＊		「
Trafic Volume（vph）	0	0	0	313	168	66	474	0	47	0	54
Future Volume（vph）	0	0	0	313	168	66	474	0	47	0	54
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	350		320	180		0		260	300
Storage Lanes	0	0	1		1	0		0		1	1
Taper Length（ft）	25		25			25				150	
Lane Util．Factor	1.00	1.00	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00
Frt											
FIt Protected						0.950			0.950		
Satd．Flow（prot）	0	0	0	5036	1845	1752	3505	0	3400	0	1845
FIt Permitted						0.539			0.950		
Satd．Flow（perm）	0	0	0	5036	1845	994	3505	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）					183						389
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	1052			1628			552			836	
Travel Time（s）	15.9			24.7			8.4			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	340	183	72	515	0	51	0	59
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	0	340	183	72	515	0	51	0	59
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			15			12			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Number of Detectors				2	1	1	2		1		1
Detector Template				Thru	Right	Left	Thru		Left		Right
Leading Detector（ft）				100	20	20	100		20		20
Trailing Detector（ft）				0	0	0	0		0		0
Detector 1 Position（t）				0	0	0	0		0		0
Detector 1 Size（tt）				6	20	20	6		20		20
Detector 1 Type				Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex		Cl＋Ex		Cl＋Ex
Detector 1 Channel											
Detector 1 Extend（s）				0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Queue（s）				0.0	0.0	0.0	0.0		0.0		0.0
Detector 1 Delay（s）				0.0	0.0	0.0	0.0		0.0		0.0
Detector 2 Position（ft）				94			94				
Detector 2 Size（ft）				6			6				
Detector 2 Type				Cl＋Ex			Cl＋Ex				
Detector 2 Channel											
Detector 2 Extend（s）				0.0			0.0				
Turn Type				NA	Perm	D．P＋P	NA		Prot		Perm
Protected Phases				6		5	2		3		
Permitted Phases					6	6					3

	\dagger		k	4	$>$						\downarrow
Lane Group	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Detector Phase				6	6	5	2		3		3
Switch Phase											
Minimum Initial (s)				15.0	15.0	6.0	15.0		6.0		6.0
Minimum Split (s)				25.0	25.0	12.8	25.0		12.8		12.8
Total Split (s)				34.0	34.0	18.0	52.0		18.0		18.0
Total Split (\%)				48.6\%	48.6\%	25.7\%	74.3\%		25.7\%		25.7\%
Maximum Green (s)				27.2	27.2	11.2	45.2		11.2		11.2
Yellow Time (s)				4.8	4.8	4.8	4.8		4.8		4.8
All-Red Time (s)				2.0	2.0	2.0	2.0		2.0		2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time (s)				6.8	6.8	6.8	6.8		6.8		6.8
Lead/Lag				Lag	Lag	Lead					
Lead-Lag Optimize?				Yes	Yes	Yes					
Vehicle Extension (s)				3.0	3.0	3.0	3.0		3.0		3.0
Recall Mode				C-Max	C-Max	None	C-Max		None		None
Walk Time (s)				7.0	7.0		7.0				
Flash Dont Walk (s)				11.0	11.0		11.0				
Pedestrian Calls (\#hr)				0	0		0				
Act Effct Green (s)				42.9	42.9	46.9	53.7		6.7		6.7
Actuated g/C Ratio				0.61	0.61	0.67	0.77		0.10		0.10
V/c Ratio				0.11	0.15	0.10	0.19		0.16		0.11
Control Delay				2.8	0.4	0.7	0.6		30.0		0.4
Queue Delay				0.0	0.0	0.0	0.0		0.0		0.0
Total Delay				2.8	0.4	0.7	0.6		30.0		0.4
LOS				A	A	A	A		C		A
Approach Delay				1.9			0.6			14.1	
Approach LOS				A			A			B	
Queue Length 50th (ft)				3	1	1	2		10		0
Queue Length 95th (tt)				7	0	1	3		25		0
Internal Link Dist (ft)	972			1548			472			756	
Turn Bay Length (ft)					320	180			260		300
Base Capacity (vph)				3086	1201	838	2686		544		621
Starvation Cap Reductn				0	0	0	0		0		0
Spillback Cap Reductn				0	0	0	0		0		0
Storage Cap Reductn				0	0	0	0		0		0
Reduced v/c Ratio				0.11	0.15	0.09	0.19		0.09		0.10
Intersection Summary											

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: $0(0 \%)$, Referenced to phase 2:SBT and 6:NBSB, Start of Green
Natural Cycle: 55
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.19

Intersection Signal Delay: 2.4
Intersection LOS: A
Intersection Capacity Utilization 29.4\%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 5: 129 \& EB Off Ramp

			4		0^{4}		\dagger		7		4
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Lane Configurations			${ }^{*}$	中4			性中		${ }^{7 \% 1}$		F
Traffic Volume（vph）	0	0	43	317	0	0	400	51	140	0	57
Future Volume（vph）	0	0	43	317	0	0	400	51	140	0	57
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	180		0	250		110		205	245
Storage Lanes	0	0	0		0	1		0		1	1
Taper Length（ft）	25		25			25				150	
Lane Util．Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91	0.97	1.00	1.00
Frt							0.983				
Flt Protected			0.950						0.950		
Satd．Flow（prot）	0	0	1752	3505	0	0	4950	0	3400	0	1845
Flt Permitted			0.463						0.950		
Satd．Flow（perm）	0	0	854	3505	0	0	4950	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）							33				566
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	754			552			613			791	
Travel Time（s）	11.4			8.4			9.3			12.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	47	345	0	0	435	55	152	0	62
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	47	345	0	0	490	0	152	0	62
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	L NA	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			12			15			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Number of Detectors			1	2			2		1		1
Detector Template			Left	Thru			Thru		Left		Right
Leading Detector（ft）			20	100			100		20		20
Trailing Detector（ft）			0	0			0		0		0
Detector 1 Position（ft）			0	0			0		0		0
Detector 1 Size（ft）			20	6			6		20		20
Detector 1 Type			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel											
Detector 1 Extend（s）			0.0	0.0			0.0		0.0		0.0
Detector 1 Queue（s）			0.0	0.0			0.0		0.0		0.0
Detector 1 Delay（s）			0.0	0.0			0.0		0.0		0.0
Detector 2 Position（ft）				94			94				
Detector 2 Size（ft）				6			6				
Detector 2 Type				Cl＋Ex			Cl＋Ex				
Detector 2 Channel											
Detector 2 Extend（s）				0.0			0.0				
Turn Type			D．P＋P	NA			NA		Prot		Perm
Protected Phases			1	6			2		7		
Permitted Phases			2								7

			4		1	4	\ddagger		\uparrow		4
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Detector Phase			1	6			2		7		7
Switch Phase											
Minimum Initial (s)			6.0	15.0			15.0		6.0		6.0
Minimum Split (s)			25.0	25.0			25.0		12.8		12.8
Total Split (s)			25.0	54.0			29.0		16.0		16.0
Total Split (\%)			35.7\%	77.1\%			41.4\%		22.9\%		22.9\%
Maximum Green (s)			18.2	47.2			22.2		9.2		9.2
Yellow Time (s)			4.8	4.8			4.8		4.8		4.8
All-Red Time (s)			2.0	2.0			2.0		2.0		2.0
Lost Time Adjust (s)			0.0	0.0			0.0		0.0		0.0
Total Lost Time (s)			6.8	6.8			6.8		6.8		6.8
Lead/Lag			Lag				Lead				
Lead-Lag Optimize?			Yes				Yes				
Vehicle Extension (s)			3.0	3.0			3.0		3.0		3.0
Recall Mode			Max	C-Max			Max		None		None
Walk Time (s)			7.0	7.0			7.0				
Flash Dont Walk (s)			11.0	11.0			11.0				
Pedestrian Calls (\#/hr)			0	0			0				
Act Effct Green (s)			41.5	48.3			23.3		8.1		8.1
Actuated g/C Ratio			0.59	0.69			0.33		0.12		0.12
v/c Ratio			0.06	0.14			0.29		0.39		0.09
Control Delay			0.6	0.6			11.7		31.3		0.2
Queue Delay			0.0	0.0			0.0		0.0		0.0
Total Delay			0.6	0.6			11.7		31.3		0.2
LOS			A	A			B		C		A
Approach Delay				0.6			11.7			22.3	
Approach LOS				A			B			C	
Queue Length 50th (ft)			0	0			25		31		0
Queue Length 95th (ft)			1	1			37		56		0
Internal Link Dist (ft)	674			472			533			711	
Turn Bay Length (ft)			180						205		245
Base Capacity (vph)			739	2418			1669		446		734
Starvation Cap Reductn			0	0			0		0		0
Spillback Cap Reductn			0	0			0		0		0
Storage Cap Reductn			0	0			0		0		0
Reduced v/c Ratio			0.06	0.14			0.29		0.34		0.08
Intersection Summary											

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 68 (97\%), Referenced to phase 6:NBT, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.39
Intersection Signal Delay: 9.8
Intersection LOS: A
Intersection Capacity Utilization 29.4\%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 6: 129 \& WB Off Ramp

	7					\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	「	44			4中4
Traffic Volume (vph)	133	25	212	2	0	339
Future Volume (vph)	133	25	212	2	0	339
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	60		0	310	
Storage Lanes	1	1		0	1	
Taper Length (ft)	25				50	
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.91
Frt		0.850	0.999			
Flt Protected	0.950					
Satd. Flow (prot)	1752	1568	3501	0	0	5036
Flt Permitted	0.950					
Satd. Flow (perm)	1752	1568	3501	0	0	5036
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		27	1			
Link Speed (mph)	30		45			45
Link Distance (ft)	196		311			457
Travel Time (s)	4.5		4.7			6.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	145	27	230	2	0	368
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	145	27	232	0	0	368
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		15			15
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		0			0
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Number of Detectors	1	1	2			2
Detector Template	Left	Right	Thru			Thru
Leading Detector (ft)	20	20	100			100
Trailing Detector (ft)	0	0	0			0
Detector 1 Position(ft)	0	0	0			0
Detector 1 Size(ft)	20	20	6			6
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend (s)	0.0	0.0	0.0			0.0
Detector 1 Queue (s)	0.0	0.0	0.0			0.0
Detector 1 Delay (s)	0.0	0.0	0.0			0.0
Detector 2 Position(ft)			94			94
Detector 2 Size(ft)			6			6
Detector 2 Type			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel						
Detector 2 Extend (s)			0.0			0.0
Turn Type	Prot	Prot	NA			NA
Protected Phases	3	3	2			6
Permitted Phases						

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 27 (39%), Referenced to phase 2:NBT and 6:SBT, Start of Green
Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.52
Intersection Signal Delay: 9.9 Intersection LOS: A
Intersection Capacity Utilization 31.0\% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: $12: 129$ BB North

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	性	
Traffic Volume（vph）	15	，	23	55	2	81	60	489	36	109	378	20
Future Volume（vph）	15	4	23	55	2	81	60	489	36	109	378	20
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.925			0.853				0.850		0.992	
Flt Protected		0.983		0.950			0.950			0.950		
Satd．Flow（prot）	0	1677	0	1752	1573	0	1752	3505	1568	1752	3477	0
Flt Permitted		0.846		0.728			0.500			0.356		
Satd．Flow（perm）	0	1444	0	1343	1573	0	922	3505	1568	657	3477	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		25			88				159		8	
Link Speed（mph）		35			35			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		10.1			5.4			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	16	4	25	60	2	88	65	532	39	118	411	22

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	45	0	60	90	0	65	532	39	118	433	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（tt）		12			12			12			15	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9

Turning Speed（mph）	Perm	NA	Perm	NA	pm＋pt	NA	Perm	pm＋pt	NA	
Turn Type		4	8	8	5	2		1	6	
Protected Phases	4			8		2		2	6	
Permitted Phases	4	4	8	8	5	2	2	1	6	
Detector Phase	4									

Switch Phase									
Minimum Initial（s）	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split（s）	25.0	25.0	25.0	25.0	12.8	25.2	25.2	12.8	25.2
Total Split（s）	25.0	25.0	25.0	25.0	14.0	30.0	30.0	15.0	31.0
Total Split（\％）	35．7\％	35．7\％	35．7\％	35．7\％	20．0\％	42．9\％	42．9\％	21．4\％	44．3\％
Maximum Green（s）	18.6	18.6	18.6	18.6	7.2	23.2	23.2	8.2	24.2
Yellow Time（s）	4.0	4.0	4.0	4.0	4.8	4.8	4.8	4.8	4.8
All－Red Time（s）	2.4	2.4	2.4	2.4	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		6.4	6.4	6.4	6.8	6.8	6.8	6.8	6.8
Lead／Lag					Lag	Lag	Lag	Lead	Lead
Lead－Lag Optimize？					Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C－Max	C－Max	None	C－Max
Walk Time（s）	7.0	7.0	7.0	7.0		7.0	7.0		7.0

	4	\rightarrow		1			4	\dagger	7		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0	0		0	
Act Effct Green (s)		8.7		8.7	8.7		39.6	39.6	39.6	42.2	43.5	
Actuated g/C Ratio		0.12		0.12	0.12		0.57	0.57	0.57	0.60	0.62	
V / c Ratio		0.22		0.36	0.33		0.11	0.27	0.04	0.23	0.20	
Control Delay		18.4		33.4	10.6		13.2	11.9	0.1	4.2	2.8	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		18.4		33.4	10.6		13.2	11.9	0.1	4.2	2.8	
LOS		B		C	B		B	B	A	A	A	
Approach Delay		18.4			19.7			11.3			3.1	
Approach LOS		B			B			B			A	
Queue Length 50th (ft)		8		24	1		14	70	0	6	10	
Queue Length 95th (ft)		33		55	36		41	124	0	29	50	
Internal Link Dist (t)		436			197			681			1548	
Turn Bay Length (ft)				60			250		500	245		
Base Capacity (vph)		402		356	482		588	1981	955	536	2165	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.11		0.17	0.19		0.11	0.27	0.04	0.22	0.20	
Intersection Summary												

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: $44(63 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.36

Intersection Signal Delay: 9.2	Intersection LOS: A
Intersection Capacity Utilization 45.3\%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 4: 129 \& 68th

	7		k		7			あ			\rangle
Lane Group	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations				444	「	${ }^{7}$	44		\％		「
Traffic Volume（vph）	0	0	0	428	157	81	440	0	77	0	67
Future Volume（vph）	0	0	0	428	157	81	440	0	77	0	67
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	350		320	180		0		260	300
Storage Lanes	0	0	1		1	0		0		1	1
Taper Length（ft）	25		25			25				150	
Lane Util．Factor	1.00	1.00	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00
Frt											
Flt Protected						0.950			0.950		
Satd．Flow（prot）	0	0	0	5036	1845	1752	3505	0	3400	0	1845
Flt Permitted						0.475			0.950		
Satd．Flow（perm）	0	0	0	5036	1845	876	3505	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）					171						420
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	1052			1628			552			836	
Travel Time（s）	15.9			24.7			8.4			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	465	171	88	478	0	84	0	73
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	0	465	171	88	478	0	84	0	73
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			15			12			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Turn Type				NA	Perm	D．P＋P	NA		Prot		Perm
Protected Phases				6		5	2		3		
Permitted Phases					6	6					3
Detector Phase				6	6	5	2		3		3
Switch Phase											
Minimum Initial（s）				15.0	15.0	6.0	15.0		6.0		6.0
Minimum Split（s）				25.0	25.0	12.8	25.0		12.8		12.8
Total Split（s）				34.0	34.0	18.0	52.0		18.0		18.0
Total Split（\％）				48．6\％	48．6\％	25．7\％	74．3\％		25．7\％		25．7\％
Maximum Green（s）				27.2	27.2	11.2	45.2		11.2		11.2
Yellow Time（s）				4.8	4.8	4.8	4.8		4.8		4.8
All－Red Time（s）				2.0	2.0	2.0	2.0		2.0		2.0
Lost Time Adjust（s）				0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time（s）				6.8	6.8	6.8	6.8		6.8		6.8
Lead／Lag				Lag	Lag	Lead					
Lead－Lag Optimize？				Yes	Yes	Yes					
Vehicle Extension（s）				3.0	3.0	3.0	3.0		3.0		3.0
Recall Mode				C－Max	C－Max	None	C－Max		None		None
Walk Time（s）				7.0	7.0		7.0				

Splits and Phases: 5: 129 \& EB Off Ramp

			4		10		\ddagger	4	7		4
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Lane Configurations			${ }^{7}$	中4			性 ${ }^{\text {a }}$		\％＊		「
Traffic Volume（vph）	0	0	67	438	0	0	383	86	138	0	106
Future Volume（vph）	0	0	67	438	0	0	383	86	138	0	106
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	180		0	250		250		205	245
Storage Lanes	0	0	0		0	1		0		1	1
Taper Length（ft）	25		25			25				150	
Lane Util．Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91	0.97	1.00	1.00
Frt							0.973				
Flt Protected			0.950						0.950		
Satd．Flow（prot）	0	0	1752	3505	0	0	4900	0	3400	0	1845
Flt Permitted			0.455						0.950		
Satd．Flow（perm）	0	0	839	3505	0	0	4900	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）							75				439
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	754			552			641			791	
Travel Time（s）	11.4			8.4			9.7			12.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	73	476	0	0	416	93	150	0	115
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	73	476	0	0	509	0	150	0	115
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	L NA	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			12			15			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Turn Type			D．P＋P	NA			NA		Prot		Perm
Protected Phases			1	6			2		7		
Permitted Phases			2								7
Detector Phase			1	6			2		7		7
Switch Phase											
Minimum Initial（s）			6.0	15.0			15.0		6.0		6.0
Minimum Split（s）			25.0	25.0			25.0		12.8		12.8
Total Split（s）			25.0	54.0			29.0		16.0		16.0
Total Split（\％）			35．7\％	77．1\％			41．4\％		22．9\％		22．9\％
Maximum Green（s）			18.2	47.2			22.2		9.2		9.2
Yellow Time（s）			4.8	4.8			4.8		4.8		4.8
All－Red Time（s）			2.0	2.0			2.0		2.0		2.0
Lost Time Adjust（s）			0.0	0.0			0.0		0.0		0.0
Total Lost Time（s）			6.8	6.8			6.8		6.8		6.8
Lead／Lag			Lag				Lead				
Lead－Lag Optimize？			Yes				Yes				
Vehicle Extension（s）			3.0	3.0			3.0		3.0		3.0
Recall Mode			Max	C－Max			Max		None		None
Walk Time（s）			7.0	7.0			7.0				

4	$7 \quad 4$	4	pa	4	1		7		4
Lane Group EBL	EBR NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Flash Dont Walk (s)	11.0	11.0			11.0				
Pedestrian Calls (\#/hr)	0	0			0				
Act Effct Green (s)	41.5	48.3			23.3		8.1		8.1
Actuated g/C Ratio	0.59	0.69			0.33		0.12		0.12
v/c Ratio	0.10	0.20			0.30		0.38		0.19
Control Delay	0.9	1.0			9.5		31.2		0.7
Queue Delay	0.0	0.0			0.0		0.0		0.0
Total Delay	0.9	1.0			9.5		31.2		0.7
LOS	A	A			A		C		A
Approach Delay		1.0			9.5			18.0	
Approach LOS		A			A			B	
Queue Length 50th (ft)	0	1			22		31		0
Queue Length 95th (ft)	2	4			36		56		0
Internal Link Dist (ft) 674		472			561			711	
Turn Bay Length (ft)	180						205		245
Base Capacity (vph)	734	2418			1681		446		623
Starvation Cap Reductn	0	0			0		0		0
Spillback Cap Reductn	0	0			0		0		0
Storage Cap Reductn	0	0			0		0		0
Reduced v/c Ratio	0.10	0.20			0.30		0.34		0.18
Intersection Summary									
Area Type: Other									
Cycle Length: 70									
Actuated Cycle Length: 70									
Offset: 68 (97\%), Referenced to phase 6:NBT, Start of Green									
Natural Cycle: 65									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.38									
Intersection Signal Delay: 7.7			Intersection LOS: A						
Intersection Capacity Utilization 30.4\%			ICU Level of Service A						
Analysis Period (min) 15									

Splits and Phases: 6: 129 \& WB Off Ramp

	7					
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	「'	44			444
Traffic Volume (vph)	179	26	347	3	0	302
Future Volume (vph)	179	26	347	3	0	302
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	60		0	310	
Storage Lanes	1	1		0	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.91
Frt		0.850	0.999			
Flt Protected	0.950					
Satd. Flow (prot)	1752	1568	3501	0	0	5036
Flt Permitted	0.950					
Satd. Flow (perm)	1752	1568	3501	0	0	5036
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		28	1			
Link Speed (mph)	30		45			45
Link Distance (ft)	196		283			457
Travel Time (s)	4.5		4.3			6.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	195	28	377	3	0	328
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	195	28	380	0	0	328
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		15			15
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		0			0
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot	Prot	NA			NA
Protected Phases	3	3	2			6
Permitted Phases						
Detector Phase	3	3	2			6
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0			15.0
Minimum Split (s)	11.5	11.5	25.0			25.0
Total Split (s)	34.0	34.0	36.0			36.0
Total Split (\%)	48.6\%	48.6\%	51.4\%			51.4\%
Maximum Green (s)	27.5	27.5	29.2			29.2
Yellow Time (s)	4.5	4.5	4.8			4.8
All-Red Time (s)	2.0	2.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.8			6.8
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Recall Mode	None	None	C-Min			C-Min
Walk Time (s)			7.0			7.0

[^23]Synchro 11 Report
Page 1

	\dagger		\dagger	$>$		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Flash Dont Walk (s)			11.0			11.0
Pedestrian Calls (\#/hr)			0			0
Act Effct Green (s)	13.1	13.1	43.6			43.6
Actuated g/C Ratio	0.19	0.19	0.62			0.62
v/c Ratio	0.59	0.09	0.17			0.10
Control Delay	32.9	9.2	4.0			6.1
Queue Delay	0.0	0.0	0.0			0.0
Total Delay	32.9	9.2	4.0			6.1
LOS	C	A	A			A
Approach Delay	29.9		4.0			6.1
Approach LOS	C		A			A
Queue Length 50th (ft)	78	0	23			18
Queue Length 95th (t)	126	17	32			35
Internal Link Dist (ft)	116		203			377
Turn Bay Length (ft)		60				
Base Capacity (vph)	688	633	2179			3133
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.28	0.04	0.17			0.10
Intersection Summary						
Area Type: Other						
Cycle Length: 70						
Actuated Cycle Length: 70						
Offset: $24(34 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green						
Natural Cycle: 40						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.59						
Intersection Signal Delay: 10.9				Intersection LOS: B		
Intersection Capacity Utilization 33.5\%				ICU Level of Service A		
Analysis Period (min) 15						

Splits and Phases: 12: 129 \& BB North

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	性	
Traffic Volume（vph）	24	6	13	32	5	44	15	606	31	83	646	10
Future Volume（vph）	24	6	13	32	5	44	15	606	31	83	646	10
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.960			0.864				0.850		0.998	
Flt Protected		0.973		0.950			0.950			0.950		
Satd．Flow（prot）	0	1723	0	1752	1594	0	1752	3505	1568	1752	3498	0
Flt Permitted		0.799		0.726			0.381			0.317		
Satd．Flow（perm）	0	1415	0	1339	1594	0	703	3505	1568	585	3498	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		14			48				159		2	
Link Speed（mph）		35			35			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		10.1			5.4			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	26	7	14	35	5	48	16	659	34	90	702	11

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	47	0	35	53	0	16	659	34	90	713	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（tt）		12			12			12			15	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9

Turning Speed（mph）	Perm	NA	Perm	NA	pm＋pt	NA	Perm	pm＋pt	NA	
Turn Type		4	8	8	5	2		1	6	
Protected Phases	4			8		2		2	6	
Permitted Phases	4	4	8	8	5	2	2	1	6	
Detector Phase	4									

Switch Phase									
Minimum Initial（s）	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split（s）	25.0	25.0	25.0	25.0	12.8	25.2	25.2	12.8	25.2
Total Split（s）	25.0	25.0	25.0	25.0	13.0	31.0	31.0	14.0	32.0
Total Split（\％）	35.7%	35.7%	35.7%	35.7%	18.6%	44.3%	44.3%	20.0%	45.7%
Maximum Green（s）	18.6	18.6	18.6	18.6	6.2	24.2	24.2	7.2	25.2
Yellow Time（s）	4.0	4.0	4.0	4.0	4.8	4.8	4.8	4.8	4.8
All－Red Time（s）	2.4	2.4	2.4	2.4	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		6.4	6.4	6.4	6.8	6.8	6.8	6.8	6.8
Lead／Lag					Lag	Lag	Lag	Lead	Lead
Lead－Lag Optimize？					Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C－Max	C－Max	None	C－Max
Walk Time（s）	7.0	7.0	7.0	7.0		7.0	7.0		7.0

	4	\rightarrow		7		4	4	\uparrow	7	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	
Pedestrian Calls (\#hr)	0	0		0	0			0	0		0	
Act Effict Green (s)		7.5		7.5	7.5		41.8	41.8	41.8	49.2	50.5	
Actuated g/C Ratio		0.11		0.11	0.11		0.60	0.60	0.60	0.70	0.72	
v/c Ratio		0.29		0.24	0.25		0.03	0.31	0.03	0.17	0.28	
Control Delay		26.2		32.2	13.4		10.7	10.6	0.1	2.6	2.3	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		26.2		32.2	13.4		10.7	10.6	0.1	2.6	2.3	
LOS		C		C	B		B	B	A	A	A	
Approach Delay		26.2			20.9			10.1			2.3	
Approach LOS		C			C			B			A	
Queue Length 50th (ft)		13		14	2		3	82	0	2	8	
Queue Length 95th (ft)		41		38	30		14	140	0	13	70	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		386		355	458		499	2095	1001	538	2526	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.12		0.10	0.12		0.03	0.31	0.03	0.17	0.28	

Intersection Summary

Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 70
Offset: $40(57 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.31

Intersection Signal Delay: 7.3	Intersection LOS: A
Intersection Capacity Utilization 48.9\%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: $\quad 4: 129$ \& 68th

	7		\cdots			＊		あ			\rangle
Lane Group	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations				坐4	「	${ }^{7}$	44		${ }^{7} 1$		「
Traffic Volume（vph）	0	0	0	438	236	92	663	0	66	0	76
Future Volume（vph）	0	0	0	438	236	92	663	0	66	0	76
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	350		320	180		0		260	300
Storage Lanes	0	0	1		1	0		0		1	1
Taper Length（ft）	25		25			25				150	
Lane Util．Factor	1.00	1.00	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00
Frt											
Flt Protected						0.950			0.950		
Satd．Flow（prot）	0	0	0	5036	1845	1752	3505	0	3400	0	1845
Flt Permitted						0.470			0.950		
Satd．Flow（perm）	0	0	0	5036	1845	867	3505	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）					257						272
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	1052			1628			552			836	
Travel Time（s）	15.9			24.7			8.4			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	476	257	100	721	0	72	0	83
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	0	476	257	100	721	0	72	0	83
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			15			12			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Turn Type				NA	Perm	D．P＋P	NA		Prot		Perm
Protected Phases				6		5	2		3		
Permitted Phases					6	6					3
Detector Phase				6	6	5	2		3		3
Switch Phase											
Minimum Initial（s）				15.0	15.0	6.0	15.0		6.0		6.0
Minimum Split（s）				25.0	25.0	21.8	25.0		12.8		12.8
Total Split（s）				30.0	30.0	24.0	54.0		16.0		16.0
Total Split（\％）				42．9\％	42．9\％	34．3\％	77．1\％		22．9\％		22．9\％
Maximum Green（s）				23.2	23.2	17.2	47.2		9.2		9.2
Yellow Time（s）				4.8	4.8	4.8	4.8		4.8		4.8
All－Red Time（s）				2.0	2.0	2.0	2.0		2.0		2.0
Lost Time Adjust（s）				0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time（s）				6.8	6.8	6.8	6.8		6.8		6.8
Lead／Lag				Lag	Lag	Lead					
Lead－Lag Optimize？				Yes	Yes	Yes					
Vehicle Extension（s）				3.0	3.0	3.0	3.0		3.0		3.0
Recall Mode				C－Max	C－Max	None	C－Max		None		None
Walk Time（s）				7.0	7.0		7.0				

Splits and Phases: 5: 129 \& EB Off Ramp

	4		4		ρ^{+4}			4	\uparrow		4
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Lane Configurations			${ }^{1}$	44			性 ${ }^{\text {a }}$		\%		「
Traffic Volume (vph)	0	0	60	444	0	0	560	71	195	0	79
Future Volume (vph)	0	0	60	444	0	0	560	71	195	0	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	180		0	250		250		205	245
Storage Lanes	0	0	0		0	1		0		1	1
Taper Length (ft)	25		25			25				150	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91	0.97	1.00	1.00
Frt							0.983				
Flt Protected			0.950						0.950		
Satd. Flow (prot)	0	0	1752	3505	0	0	4950	0	3400	0	1845
Flt Permitted			0.363						0.950		
Satd. Flow (perm)	0	0	670	3505	0	0	4950	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd. Flow (RTOR)							33				424
Link Speed (mph)	45			45			45			45	
Link Distance (ft)	754			552			625			791	
Travel Time (s)	11.4			8.4			9.5			12.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	65	483	0	0	609	77	212	0	86
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	0	0	65	483	0	0	686	0	212	0	86
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	L NA	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	0			12			15			24	
Link Offset(ft)	0			0			0			0	
Crosswalk Width(ft)	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15		9	15		9	15	15	9
Turn Type			D.P+P	NA			NA		Prot		Perm
Protected Phases			1	6			2		7		
Permitted Phases			2								7
Detector Phase			1	6			2		7		7
Switch Phase											
Minimum Initial (s)			6.0	15.0			15.0		6.0		6.0
Minimum Split (s)			25.0	25.0			25.0		12.8		12.8
Total Split (s)			25.0	53.0			28.0		17.0		17.0
Total Split (\%)			35.7\%	75.7\%			40.0\%		24.3\%		24.3\%
Maximum Green (s)			18.2	46.2			21.2		10.2		10.2
Yellow Time (s)			4.8	4.8			4.8		4.8		4.8
All-Red Time (s)			2.0	2.0			2.0		2.0		2.0
Lost Time Adjust (s)			0.0	0.0			0.0		0.0		0.0
Total Lost Time (s)			6.8	6.8			6.8		6.8		6.8
Lead/Lag			Lag				Lead				
Lead-Lag Optimize?			Yes				Yes				
Vehicle Extension (s)			3.0	3.0			3.0		3.0		3.0
Recall Mode			Max	C-Max			Max		None		None
Walk Time (s)			7.0	7.0			7.0				

4	$7 \quad 4$	4	pa	4	1		7		4
Lane Group EBL	EBR NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Flash Dont Walk (s)	11.0	11.0			11.0				
Pedestrian Calls (\#/hr)	0	0			0				
Act Effct Green (s)	40.5	47.3			22.3		9.1		9.1
Actuated g/C Ratio	0.58	0.68			0.32		0.13		0.13
v/c Ratio	0.10	0.20			0.43		0.48		0.14
Control Delay	0.8	0.8			13.7		31.8		0.5
Queue Delay	0.0	0.0			0.0		0.0		0.0
Total Delay	0.8	0.8			13.7		31.8		0.5
LOS	A	A			B		C		A
Approach Delay		0.8			13.7			22.8	
Approach LOS		A			B			C	
Queue Length 50th (ft)	0	0			67		44		0
Queue Length 95th (ft)	1	1			87		74		0
Internal Link Dist (ft) 674		472			545			711	
Turn Bay Length (ft)	180						205		245
Base Capacity (vph)	669	2368			1599		495		631
Starvation Cap Reductn	0	0			0		0		0
Spillback Cap Reductn	0	0			0		0		0
Storage Cap Reductn	0	0			0		0		0
Reduced v/c Ratio	0.10	0.20			0.43		0.43		0.14
Intersection Summary									
Area Type: Other									
Cycle Length: 70									
Actuated Cycle Length: 70									
Offset: 64 (91\%), Referenced to phase 6:NBT, Start of Green									
Natural Cycle: 65									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.48									
Intersection Signal Delay: 10.9			Intersection LOS: B						
Intersection Capacity Utilization 34.7\%			ICU Level of Service A						
Analysis Period (min) 15									

Splits and Phases: 6: 129 \& WB Off Ramp

	7					
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	「	44			444
Traffic Volume (vph)	186	36	295	3	0	474
Future Volume (vph)	186	36	295	3	0	474
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	60		0	310	
Storage Lanes	1	1		0	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.91
Frt		0.850	0.999			
Flt Protected	0.950					
Satd. Flow (prot)	1752	1568	3501	0	0	5036
Flt Permitted	0.950					
Satd. Flow (perm)	1752	1568	3501	0	0	5036
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		39	2			
Link Speed (mph)	30		45			45
Link Distance (ft)	196		299			457
Travel Time (s)	4.5		4.5			6.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	202	39	321	3	0	515
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	202	39	324	0	0	515
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		15			15
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		0			0
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot	Prot	NA			NA
Protected Phases	3	3	2			6
Permitted Phases						
Detector Phase	3	3	2			6
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0			15.0
Minimum Split (s)	11.5	11.5	25.0			25.0
Total Split (s)	35.0	35.0	35.0			35.0
Total Split (\%)	50.0\%	50.0\%	50.0\%			50.0\%
Maximum Green (s)	28.5	28.5	28.2			28.2
Yellow Time (s)	4.5	4.5	4.8			4.8
All-Red Time (s)	2.0	2.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.8			6.8
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Recall Mode	None	None	C-Min			C-Min
Walk Time (s)			7.0			7.0

Synchro 10 Report 2045 AM

	\dagger		\dagger	$>$		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Flash Dont Walk (s)			11.0			11.0
Pedestrian Calls (\#/hr)			0			0
Act Effct Green (s)	13.5	13.5	43.2			43.2
Actuated g/C Ratio	0.19	0.19	0.62			0.62
v/c Ratio	0.60	0.12	0.15			0.17
Control Delay	32.7	8.3	4.6			6.4
Queue Delay	0.0	0.0	0.0			0.0
Total Delay	32.7	8.3	4.6			6.4
LOS	C	A	A			A
Approach Delay	28.8		4.6			6.4
Approach LOS	C		A			A
Queue Length 50th (ft)	80	0	21			30
Queue Length 95th (tt)	129	21	33			54
Internal Link Dist (ft)	116		219			377
Turn Bay Length (tt)		60				
Base Capacity (vph)	713	661	2163			3110
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.28	0.06	0.15			0.17
Intersection Summary						
Area Type: Other						
Cycle Length: 70						
Actuated Cycle Length: 70						
Offset: 16 (23\%), Referenced to phase 2:NBT and 6:SBT, Start of Green						
Natural Cycle: 40						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.60						
Intersection Signal Delay: 10.9				Intersection LOS: B		
Intersection Capacity Utilization 33.9\%				ICU Level of Service A		
Analysis Period (min) 15						

Splits and Phases: 12: 129 \& BB North

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }^{7}$	F		${ }^{7}$	个 \uparrow	「	${ }^{7}$	性	
Traffic Volume（vph）	22	6	32	77	3	113	84	684	50	154	530	27
Future Volume（vph）	22	6	32	77	3	113	84	684	50	154	530	27
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	250		0	60		0	250		500	245		0
Storage Lanes	0		0	1		0	1		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	0.95
Frt		0.928			0.854				0.850		0.993	
Flt Protected		0.982		0.950			0.950			0.950		
Satd．Flow（prot）	0	1681	0	1752	1575	0	1752	3505	1568	1752	3480	0
Flt Permitted		0.828		0.714			0.423			0.252		
Satd．Flow（perm）	0	1417	0	1317	1575	0	780	3505	1568	465	3480	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		35			123				139		8	
Link Speed（mph）		35			35			45			45	
Link Distance（ft）		516			277			761			1628	
Travel Time（s）		10.1			5.4			11.5			24.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	24	7	35	84	3	123	91	743	54	167	576	29

Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	66	0	84	126	0	91	743	54	167	605	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（f）		12			12			12			15	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		9	15		9	15		9

Turn Type	Perm	NA	Perm	NA	pm＋pt	NA	Perm	pm＋pt	NA
Protected Phases		4		8	5	2		1	6
Permitted Phases	4		8		2		2	6	
Detector Phase	4	4	8	8	5	2	2	1	6

Switch Phase									
Minimum Initial（s）	6.0	6.0	6.0	6.0	6.0	15.0	15.0	6.0	15.0
Minimum Split（s）	25.0	25.0	25.0	25.0	12.8	25.2	25.2	12.8	25.2
Total Split（s）	25.0	25.0	25.0	25.0	13.0	36.0	36.0	19.0	42.0
Total Split（\％）	31.3%	31.3%	31.3%	31.3%	16.3%	45.0%	45.0%	23.8%	52.5%
Maximum Green（s）	18.6	18.6	18.6	18.6	6.2	29.2	29.2	12.2	35.2
Yellow Time（s）	4.0	4.0	4.0	4.0	4.8	4.8	4.8	4.8	4.8
All－Red Time（s）	2.4	2.4	2.4	2.4	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		6.4	6.4	6.4	6.8	6.8	6.8	6.8	6.8
Lead／Lag					Lag	Lag	Lag	Lead	Lead
Lead－Lag Optimize？					Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	C－Max	C－Max	None	C－Max
Walk Time（s）	7.0	7.0	7.0	7.0		7.0	7.0		7.0

	4			7			4	\uparrow	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0	11.0		11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0	0		0	
Act Effct Green (s)		10.5		10.5	10.5		40.1	40.1	40.1	45.9	45.9	
Actuated g/C Ratio		0.13		0.13	0.13		0.50	0.50	0.50	0.57	0.57	
V / C Ratio		0.31		0.49	0.40		0.20	0.42	0.06	0.40	0.30	
Control Delay		20.7		41.0	10.5		15.3	14.8	0.1	7.1	3.6	
Queue Delay		0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		20.7		41.0	10.5		15.3	14.8	0.1	7.1	3.6	
LOS		C		D	B		B	B	A	A	A	
Approach Delay		20.7			22.7			14.0			4.4	
Approach LOS		C			C			B			A	
Queue Length 50th (ft)		14		40	1		23	116	0	16	52	
Queue Length 95th (ft)		46		78	45		57	198	0	50	72	
Internal Link Dist (ft)		436			197			681			1548	
Turn Bay Length (t)				60			250		500	245		
Base Capacity (vph)		356		306	460		466	1754	854	466	2001	
Starvation Cap Reductn		0		0	0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0		0	0	0	0	0	
Storage Cap Reductn		0		0	0		0	0	0	0	0	
Reduced v/c Ratio		0.19		0.27	0.27		0.20	0.42	0.06	0.36	0.30	
Intersection Summary												

Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $44(55 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.49
Intersection Signal Delay: 11.3
Intersection Capacity Utilization 54.3\%
Analysis Period (min) 15
Splits and Phases: $\quad 4: 129$ \& 68th

	7		k		7			あ			\searrow
Lane Group	WBL	WBR	NBL	NBT	NBR	SBL	SBT	SBR	SEL2	SEL	SER
Lane Configurations				4坐	「	${ }^{7}$	44		\％		「
Traffic Volume（vph）	0	0	0	598	221	113	617	0	108	0	94
Future Volume（vph）	0	0	0	598	221	113	617	0	108	0	94
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	0	0	350		320	180		0		260	300
Storage Lanes	0	0	1		1	0		0		1	1
Taper Length（ft）	25		25			25				25	
Lane Util．Factor	1.00	1.00	1.00	0.91	1.00	1.00	0.95	1.00	0.97	1.00	1.00
Frt											
Flt Protected						0.950			0.950		
Satd．Flow（prot）	0	0	0	5036	1845	1752	3505	0	3400	0	1845
Flt Permitted						0.394			0.950		
Satd．Flow（perm）	0	0	0	5036	1845	727	3505	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd．Flow（RTOR）					240						287
Link Speed（mph）	45			45			45			45	
Link Distance（ft）	1052			1628			552			836	
Travel Time（s）	15.9			24.7			8.4			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	0	0	0	650	240	123	671	0	117	0	102
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	0	0	0	650	240	123	671	0	117	0	102
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width（ft）	0			15			12			24	
Link Offset（ft）	0			0			0			0	
Crosswalk Width（ft）	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	9	15		9	15		9	15	15	9
Turn Type				NA	Perm	D．P＋P	NA		Prot		Perm
Protected Phases				6		5	2		3		
Permitted Phases					6	6					3
Detector Phase				6	6	5	2		3		3
Switch Phase											
Minimum Initial（s）				15.0	15.0	6.0	15.0		6.0		6.0
Minimum Split（s）				25.0	25.0	12.8	25.0		12.8		12.8
Total Split（s）				38.0	38.0	21.0	59.0		21.0		21.0
Total Split（\％）				47．5\％	47．5\％	26．3\％	73．8\％		26．3\％		26．3\％
Maximum Green（s）				31.2	31.2	14.2	52.2		14.2		14.2
Yellow Time（s）				4.8	4.8	4.8	4.8		4.8		4.8
All－Red Time（s）				2.0	2.0	2.0	2.0		2.0		2.0
Lost Time Adjust（s）				0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time（s）				6.8	6.8	6.8	6.8		6.8		6.8
Lead／Lag				Lag	Lag	Lead					
Lead－Lag Optimize？				Yes	Yes	Yes					
Vehicle Extension（s）				3.0	3.0	3.0	3.0		3.0		3.0
Recall Mode				C－Max	C－Max	None	C－Max		None		None
Walk Time（s）				7.0	7.0		7.0				

Splits and Phases: 5: 129 \& EB Off Ramp

	4		4		ρ^{+4}			4	\uparrow		4
Lane Group	EBL	EBR	NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Lane Configurations			${ }^{1}$	44			性 ${ }^{\text {a }}$		\%		「
Traffic Volume (vph)	0	0	93	613	0	0	536	121	194	0	149
Future Volume (vph)	0	0	93	613	0	0	536	121	194	0	149
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	180		0	250		250		205	245
Storage Lanes	0	0	0		0	1		0		1	1
Taper Length (ft)	25		25			25				25	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.91	0.91	0.97	1.00	1.00
Frt							0.972				
Flt Protected			0.950						0.950		
Satd. Flow (prot)	0	0	1752	3505	0	0	4895	0	3400	0	1845
Flt Permitted			0.345						0.950		
Satd. Flow (perm)	0	0	636	3505	0	0	4895	0	3400	0	1845
Right Turn on Red					Yes			Yes			Yes
Satd. Flow (RTOR)							67				289
Link Speed (mph)	45			45			45			45	
Link Distance (ft)	754			552			636			791	
Travel Time (s)	11.4			8.4			9.6			12.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	101	666	0	0	583	132	211	0	162
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	0	0	101	666	0	0	715	0	211	0	162
Enter Blocked Intersection	No										
Lane Alignment	Left	Right	Left	L NA	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	0			12			15			24	
Link Offset(ft)	0			0			0			0	
Crosswalk Width(ft)	16			16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15		9	15		9	15	15	9
Turn Type			D.P+P	NA			NA		Prot		Perm
Protected Phases			1	6			2		7		
Permitted Phases			2								7
Detector Phase			1	6			2		7		7
Switch Phase											
Minimum Initial (s)			6.0	15.0			15.0		6.0		6.0
Minimum Split (s)			25.0	25.0			25.0		12.8		12.8
Total Split (s)			27.0	59.0			32.0		21.0		21.0
Total Split (\%)			33.8\%	73.8\%			40.0\%		26.3\%		26.3\%
Maximum Green (s)			20.2	52.2			25.2		14.2		14.2
Yellow Time (s)			4.8	4.8			4.8		4.8		4.8
All-Red Time (s)			2.0	2.0			2.0		2.0		2.0
Lost Time Adjust (s)			0.0	0.0			0.0		0.0		0.0
Total Lost Time (s)			6.8	6.8			6.8		6.8		6.8
Lead/Lag			Lag				Lead				
Lead-Lag Optimize?			Yes				Yes				
Vehicle Extension (s)			3.0	3.0			3.0		3.0		3.0
Recall Mode			Max	C-Max			Max		None		None
Walk Time (s)			7.0	7.0			7.0				

4	$7 \quad 4$	4	pa	4	1		7		4
Lane Group EBL	EBR NBL	NBT	NBR	SBL	SBT	SBR	NWL2	NWL	NWR
Flash Dont Walk (s)	11.0	11.0			11.0				
Pedestrian Calls (\#/hr)	0	0			0				
Act Effct Green (s)	49.4	56.2			29.2		10.2		10.2
Actuated g/C Ratio	0.62	0.70			0.36		0.13		0.13
v/c Ratio	0.15	0.27			0.39		0.49		0.33
Control Delay	1.8	1.7			11.7		35.9		1.8
Queue Delay	0.0	0.0			0.0		0.0		0.0
Total Delay	1.8	1.7			11.7		35.9		1.8
LOS	A	A			B		D		A
Approach Delay		1.7			11.7			21.1	
Approach LOS		A			B			C	
Queue Length 50th (ft)	1	3			75		51		0
Queue Length 95th (ft)	4	8			91		80		0
Internal Link Dist (ft) 674		472			556			711	
Turn Bay Length (ft)	180						205		245
Base Capacity (vph)	674	2460			1826		603		565
Starvation Cap Reductn	0	0			0		0		0
Spillback Cap Reductn	0	0			0		0		0
Storage Cap Reductn	0	0			0		0		0
Reduced v/c Ratio	0.15	0.27			0.39		0.35		0.29
Intersection Summary									
Area Type: Other									
Cycle Length: 80									
Actuated Cycle Length: 80									
Offset: 78 (98\%), Referenced to phase 6:NBT, Start of Green									
Natural Cycle: 65									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.49									
Intersection Signal Delay: 9.5			Intersection LOS: A						
Intersection Capacity Utilization 37.5\%			ICU Level of Service A						
Analysis Period (min) 15									

Splits and Phases: 6: 129 \& WB Off Ramp

	7					
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	44			444
Traffic Volume (vph)	250	37	486	5	0	423
Future Volume (vph)	250	37	486	5	0	423
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	60		0	310	
Storage Lanes	1	1		0	1	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	0.91
Frt		0.850	0.999			
Flt Protected	0.950					
Satd. Flow (prot)	1752	1568	3501	0	0	5036
Flt Permitted	0.950					
Satd. Flow (perm)	1752	1568	3501	0	0	5036
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)		40	1			
Link Speed (mph)	30		45			45
Link Distance (ft)	196		288			457
Travel Time (s)	4.5		4.4			6.9
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	272	40	528	5	0	460
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	272	40	533	0	0	460
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(ft)	12		15			15
Link Offset(ft)	0		0			0
Crosswalk Width(ft)	16		0			0
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9		9	15	
Turn Type	Prot	Prot	NA			NA
Protected Phases	3	3	2			6
Permitted Phases						
Detector Phase	3	3	2			6
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0			15.0
Minimum Split (s)	11.5	11.5	25.0			25.0
Total Split (s)	42.0	42.0	38.0			38.0
Total Split (\%)	52.5\%	52.5\%	47.5\%			47.5\%
Maximum Green (s)	35.5	35.5	31.2			31.2
Yellow Time (s)	4.5	4.5	4.8			4.8
All-Red Time (s)	2.0	2.0	2.0			2.0
Lost Time Adjust (s)	0.0	0.0	0.0			0.0
Total Lost Time (s)	6.5	6.5	6.8			6.8
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0			3.0
Recall Mode	None	None	C-Min			C-Min
Walk Time (s)			7.0			7.0

[^24]Synchro 10 Report

	\dagger		\dagger	$>$		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Flash Dont Walk (s)			11.0			11.0
Pedestrian Calls (\#/hr)			0			0
Act Effct Green (s)	18.0	18.0	48.7			48.7
Actuated g/C Ratio	0.22	0.22	0.61			0.61
v/c Ratio	0.69	0.10	0.25			0.15
Control Delay	37.0	7.8	4.5			7.7
Queue Delay	0.0	0.0	0.0			0.0
Total Delay	37.0	7.8	4.5			7.7
LOS	D	A	A			A
Approach Delay	33.3		4.5			7.7
Approach LOS	C		A			A
Queue Length 50th (ft)	125	0	32			32
Queue Length 95th (tt)	183	21	50			58
Internal Link Dist (ft)	116		208			377
Turn Bay Length (f)		60				
Base Capacity (vph)	777	718	2129			3063
Starvation Cap Reductn	0	0	0			0
Spillback Cap Reductn	0	0	0			0
Storage Cap Reductn	0	0	0			0
Reduced v/c Ratio	0.35	0.06	0.25			0.15
Intersection Summary						
Area Type: Other						
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: $28(35 \%)$, Referenced to phase 2:NBT and 6:SBT, Start of Green						
Natural Cycle: 40						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.69						
Intersection Signal Delay: 12.5				Intersection LOS: B		
Intersection Capacity Utilization 38.5\%				ICU Level of Service A		
Analysis Period (min) 15						

Splits and Phases: 12: 129 \& BB North

APPENDIX G

पC|

CMF / CRF DETAILS

CMFID:322

INSTALLA TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)

```
DESCRIPTION: INSTALL A TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)
PRIOR CONDITION: NO PRIOR CONDITION(S)
CATEGORY: INTERSECTION TRAFFIC CONTROL
STUDY: SAFETY EFFECTS OF LEFT-TURN PHASING SCHEMES AT HIGH-SPEED INTERSECTIONS, DAVIS AND AUL, 2007
```


Crash Modi cation Factor (CMF)

Value:	0.95
Adjusted Standard Error:	0.09
Unadjusted Standard Error:	0.08
	Crash Reduction Factor (CRF)
Value:	5 (This value indicates a decrease in crashes)
Adjusted Standard Error:	9
Unadjusted Standard Error:	8

Applicability

Intersection Type: Roadway/roadway (not interchange related)

Traf c Control:	Stop-controlled
Major Road Traf c Volume:	
Minor Road Traf c Volume:	
Average Major Road Volume : Minor Road Volume:	

Development Details

Date Range of Data Used:

Municipality:
State:

Country:

Type of Methodology Used: Before/after using empirical Bayes or full Bayes

Other Details

Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard errc less. However, it also includes an asterisk (${ }^{*}$) to indicate that the CMF value itself is within the range 0.90 to 1.10 , but
Included in Highway Safety Manual? con dence interval de ned by the CMF \pm two times the standard error may contain the value 1.0. This is important t a treatment with such an CMF could potentially result in (a) a reduction in crashes (safety bene t), (b) no change, or (increase in crashes (safety disbene t). HSM recommends that this CMF should be used with caution.

Date Added to Clearinghouse:	Dec-01-2009
Comments:	Countermeasure name changed to match HSM

VIEW THE FULL STUDY DETA

EXPORT DETAIL PAGE AS A F

[^25]
पC|
 CRASH MODIFICATION FACTORS CLEARINGHOUSE

CMF / CRF DETAILS

CMFID: 323

INSTALLA TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)

```
DESCRIPTION: INSTALL A TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)
PRIOR CONDITION: NO PRIOR CONDITION(S)
CATEGORY: INTERSECTION TRAFFIC CONTROL
STUDY: SAFETY EFFECTS OF LEFT-TURN PHASING SCHEMES AT HIGH-SPEED INTERSECTIONS, DAVIS AND AUL, 2007
```

Star Quality Rating: \quad 企

Intersection Geometry:	4-leg
Major Road Traf c Colume:	Stop-controlled
Minor Road Traf c Volume:	
Average Major Road Volume :	

Development Details

Date Range of Data Used:

Municipality:
State:

Country:
Type of Methodology Used: Before/after using empirical Bayes or full Bayes

Other Details

Included in Highway Safety Manual? Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard erre less.

Date Added to Clearinghouse:	Dec-01-2009
Comments:	Countermeasure name changed to match HSM

पC|
 CRASH MODIFIICATION FACTORS CLEARINGHOUSE

CMF / CRF DETAILS

CMFID:324
INSTALL A TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)

```
DESCRIPTION: INSTALL A TRAFFIC SIGNAL (MAJOR ROAD SPEED LIMIT AT LEAST 40 MPH)
PRIOR CONDITION: NO PRIOR CONDITION(S)
CATEGORY: INTERSECTION TRAFFIC CONTROL
STUDY: SAFETY EFFECTS OF LEFT-TURN PHASING SCHEMES AT HIGH-SPEED INTERSECTIONS, DAVIS AND AUL, 2007
```


Crash Modi cation Factor (CMF)

Value:	2.43
Adjusted Standard Error:	0.37
Unadjusted Standard Error:	0.31
	Crash Reduction Factor (CRF)
Value:	-143 (This value indicates an increase in crashes)
Adjusted Standard Error:	37
Unadjusted Standard Error:	31

Applicability

Crash Type:	Rear end
Crash Severity:	All
Roadway Types:	Not Speci ed
Number of Lanes:	
Road Division Type:	
Speed Limit:	
Area Type:	Urban
Traf c Volume:	
Average Traf c Volume:	
Time of Day:	
	If countermeasure is intersection-based

Traf c Control:	Stop-controlled
Major Road Traf c Volume:	
Minor Road Traf c Volume:	
Average Major Road Volume : Minor Road Volume :	

Development Details

Date Range of Data Used:

Municipality:
State:

Country:
Type of Methodology Used: Before/after using empirical Bayes or full Bayes

Other Details

Included in Highway Safety Manual? Yes. HSM lists this CMF in italics font to indicate that it has a lower reliability than bold font CMFs since it has an adjı standard error of 0.2 to 0.3.

Date Added to Clearinghouse:	Dec-01-2009
Comments:	Countermeasure name changed to match HSM

APPENDIX H

FDOT Long Range Estimate

Date: 12/27/2021 3:09:37 PM

FDOT Long Range Estimating System - Production R3: Project Details by Sequence Report

Project: 443239-1-52-01
Letting Date: 03/2025
Description: Conceptual estimate for ramp modifications at I-10 and US 129.

District: 02	County: 37 SUWANNEE	Market Area: 04	Units: English
Contract Class: 9	Lump Sum Project: N	Design/Build: Y	Project Length: 1.000 MI

Project Manager: Justin Garland

Version 9-P Project Grand Total $\quad \mathbf{\$ 6 , 1 4 2 , 6 8 2 . 7 8}$	\$6,142,682.78	
Description: 07/13/2021 VC Created by Osiris 9. US 129 widening to four lanes north of I-10. Carry 30' median typical section as far as possible and then taper down to two lanes. No bulbout U-turn.		
Sequence: 1 WDU - Widen/Resurface, Divided, Urban	Net Length:	$\begin{gathered} 0.403 \mathrm{MI} \\ 2,125 \mathrm{LF} \end{gathered}$
Description: 4-lane, urban, with 5' bicycle lanes, 6' sidewalks, variable median width.		

Description: 4-lane, urban, with 5' bicycle lanes, 6' sidewalks, variable median width.
EARTHWORK COMPONENT

User Input Data	Value
Description	$0.00 / 0.00$
Standard Clearing and Grubbing Limits L/R	6.50
Incidental Clearing and Grubbing Area	1
	0.000
Alignment Number	102.00
Distance	102.00
Top of Structural Course For Begin Section	100.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	6 to $1 / 6$ to 1
Horizontal Elevation For End Section	$0.00 \% / 0.00 \%$
Existing Front Slope L/R	$6.00 \% / 6.00 \%$
Existing Median Shoulder Cross Slope L/R	6 to $1 / 6$ to 1
Existing Outside Shoulder Cross Slope L/R	$0.00 \% / 0.00 \%$
Front Slope L/R	$2.00 \% / 2.00 \%$
Median Shoulder Cross Slope L/R	$2.00 \% / 2.00 \%$
Outside Shoulder Cross Slope L/R	

Pay Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
110-1-1	CLEARING \& GRUBBING	6.50 AC	\$16,509.96	\$107,314.74
X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
120-1	REGULAR EXCAVATION	815.00 CY	\$13.17	\$10,733.55
	Comment: Calculated from 3D model.			
	Earthwork Component Total			\$118,048.29

ROADWAY COMPONENT
User Input Data

Description	Value
Number of Lanes	4
Existing Roadway Pavement Width L/R	$16.20 / 14.87$
Structural Spread Rate	165
Friction Course Spread Rate	165
Widened Outside Pavement Width L/R	$16.96 / 17.86$
Widened Inside Pavement Width L/R	$0.29 / 0.00$
Widened Structural Spread Rate	165
Widened Friction Course Spread Rate	165

Pay Items Pay item	Description OPTIONAL BASE,BASE GROUP 09
$327-709$	MILLING EXIST ASPH PAVT, 2"
	AVG DEPTH
$334-1-53$	SUPERPAVE ASPH CONC, TRAF
	C, PG76-22
$334-1-53$	SUPERPAVE ASPH CONC, TRAF
	C, PG76-22
$337-7-83$	ASPH CONC FC,TRAFFIC C,FC-
	12.5,PG 76-22
$337-7-83$	ASPH CONC FC,TRAFFIC C,FC-
	12.5, PG 76-22

Quantity Unit	Unit Price	Extended Amount
8,524.41 SY	$\$ 30.49$	$\$ 259,909.26$
$7,336.66$ SY	$\$ 2.55$	$\$ 18,708.48$
605.27 TN	$\$ 126.68$	$\$ 76,675.60$
683.98 TN	$\$ 126.68$	$\$ 86,646.59$
683.98 TN	$\$ 138.67$	$\$ 94,847.51$
605.27 TN	$\$ 138.67$	$\$ 83,932.79$

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	Y
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	1
Solid Stripe No. of Stripes	2
Skip Stripe No. of Paint Applications	1
Skip Stripe No. of Stripes	2

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	163.00 EA	\$5.16	\$841.08
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	0.80 GM	\$1,098.02	\$878.42
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	0.80 GM	\$589.46	\$471.57
711-15-201	THERMOPLASTIC, STDOP,YELLOW, SOLID, 6"	0.80 GM	\$5,632.60	\$4,506.08
711-16-101	THERMOPLASTIC, STD-OTH, WHITE, SOLID, $6^{\prime \prime}$	0.80 GM	\$5,062.19	\$4,049.75
711-16-131	THERMOPLASTIC, STD-OTH, WHITE, SKIP, 6"	0.80 GM	\$1,514.05	\$1,211.24
	Roadway Component Total			\$632,678.37

SHOULDER COMPONENT

User Input Data

Description

Value
Existing Total Outside Shoulder Width L/R
$15.00 / 15.00$
New Total Outside Shoulder Width L/R

Total Outside Shoulder Perf. Turf Width L/R	$4.28 / 4.27$
Sidewalk Width L/R	$2.03 / 2.13$

Pay Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
522-1	CONCRETE SIDEWALK AND	982.31 SY	$\$ 47.68$	$\$ 46,836.54$
	DRIVEWAYS, 4"			
$570-1-1$	PERFORMANCE TURF	$2,018.94 \mathrm{SY}$	$\$ 0.49$	$\$ 989.28$
X-Items		Quantity Unit	Unit Price Extended Amount	
Pay item	Description	$3,370.00$ LF	$\$ 32.02$	$\$ 107,907.40$
$520-1-10$	CONCRETE CURB \& GUTTER,			

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$104-10-3$	SEDIMENT BARRIER	$4,290.00 \mathrm{LF}$	$\$ 2.25$	$\$ 9,652.50$
$104-12$	STAKED TURBIDITY BARRIER-	41.19 LF	$\$ 6.96$	$\$ 286.68$
	NYL REINF PVC			
$104-15$	SOIL TRACKING PREVENTION	1.00 EA	$\$ 2,968.67$	$\$ 2,968.67$
	DEVICE			
$107-1$	LITTER REMOVAL	3.59 AC	$\$ 22.61$	$\$ 81.17$
$107-2$	MOWING	3.59 AC	$\$ 58.81$	$\$ 211.13$
				$\$ 168,933.37$

MEDIAN COMPONENT

User Input Data	
Description	Value
Total Median Width	18.00
Performance Turf Width	11.69

Pay Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$570-1-2$	PERFORMANCE TURF, SOD	$2,760.40 \mathrm{SY}$	$\$ 3.50$	$\$ 9,661.40$

X-Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$520-1-7$	CONCRETE CURB \& GUTTER,	$3,270.00 \mathrm{LF}$	$\$ 20.74$	$\$ 67,819.80$

DRAINAGE COMPONENT

Pay Items
\quad Pay item

$425-1-351$
$430-175-124$
$570-1-1$

Description

INLETS, CURB, TYPE P-5, < 10 '
PIPE CULV, OPT MATL, ROUND, 24"S/CD
570-1-1
PERFORMANCE TURF

Quantity Unit	Unit Price	Extended Amount
7.00 EA	$\$ 5,779.41$	$\$ 40,455.87$
$2,120.00 \mathrm{LF}$	$\$ 95.93$	$\$ 203,371.60$
250.00 SY	$\$ 0.49$	$\$ 122.50$

SIGNING COMPONENT

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12	30.00 AS	$\$ 387.62$	$\$ 11,628.60$
	SF			
$700-1-12$	SINGLE POST SIGN, F\&I GM, 12-20	6.00 AS	$\$ 954.13$	$\$ 5,724.78$
	SF			
$700-1-60$	SINGLE POST SIGN, REMOVE	12.00 AS	$\$ 11.93$	$\$ 143.16$
$700-2-60$	MULTI- POST SIGN, REMOVE	1.00 AS	$\$ 119.26$	$\$ 119.26$

X-Items

Pay item
700-2-12

Description
MULTI- POST SIGN, F\&I GM, 12-20 SF

Quantity Unit Unit Price Extended Amount 1.00 AS \$3,866.67 \$3,866.67

Comment: All signs updated to reflect conceptual signing plan.
700-2-14
MULTI- POST SIGN, F\&I GM, 31-50 SF

SIGNALIZATIONS COMPONENT

Signalization 1

Description	Value
Type	4 Lane Mast Arm
Multiplier	1
Description	

Pay Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
630-2-11	CONDUIT, F\& I, OPEN TRENCH	750.00 LF	\$5.04	\$3,780.00
630-2-12	CONDUIT, F\&I, DIRECTIONAL BORE	250.00 LF	\$22.06	\$5,515.00
632-7-1	SIGNAL CABLE- NEW OR RECO, FUR \& INSTALL	4.00 PI	\$5,366.96	\$21,467.84
635-2-11	PULL \& SPLICE BOX, F\&I, 13" x 24"	16.00 EA	\$653.51	\$10,456.16
639-1-112	ELECTRICAL POWER SRV,F\&I,OH,M,PUR BY CON	1.00 AS	\$2,870.71	\$2,870.71
639-2-1	ELECTRICAL SERVICE WIRE, F\&I	100.00 LF	\$5.42	\$542.00
641-2-11	PREST CNC POLE,F\&I,TYP P-II,PEDESTAL	2.00 EA	\$1,438.45	\$2,876.90
650-1-14	VEH TRAF SIGNAL,F\&I ALUMINUM, 3 S 1 W	10.00 AS	\$1,037.87	\$10,378.70
653-1-11	PEDESTRIAN SIGNAL, F\&I LED COUNT, 1 WAY	2.00 AS	\$638.47	\$1,276.94
660-2-106	LOOP ASSEMBLY, F\&I, TYPE F	7.00 AS	\$1,311.92	\$9,183.44
665-1-12	PEDESTRIAN DETECTOR, F\&I, ACCESSIBLE	2.00 EA	\$1,501.89	\$3,003.78
670-5-111	TRAF CNTL ASSEM, F\&I, NEMA, 1 PREEMPT	1.00 AS	\$32,000.00	\$32,000.00
700-5-21	INTERNAL ILLUM SIGN, F\&I OM, UP TO 12 SF	3.00 EA	\$3,950.00	\$11,850.00

X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
649-21-3	STEEL MAST ARM ASSEMBLY, F\&I, 40'	1.00 EA	\$44,000.00	\$44,000.00
649-21-13	STEEL MAST ARM ASSEMBLY, F\&I, 60'- 50'	1.00 EA	\$53,977.39	\$53,977.39
	Signalizations Component Total			\$213,178.86
LIGHTING COMPONENT				
X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
630-2-11	CONDUIT, F\& I, OPEN TRENCH	500.00 LF	\$5.04	\$2,520.00
635-2-11	PULL \& SPLICE BOX, F\&I, 13" x 24"	4.00 EA	\$653.51	\$2,614.04
639-1-122	ELECTRICAL POWER SRV,F\&I, UG,PUR CONT	1.00 AS	\$3,001.33	\$3,001.33
715-5-31	LUMINAIRE \& BRACKET ARM, F\&I NEW	2.00 EA	\$1,747.43	\$3,494.86
	Comment: Lighting for northern busy bee intersection			
	Lighting Component Total			\$11,630.23
Sequence 1				\$1,492,167.59

SIGNALIZATIONS COMPONENT

Interconnect Subcomponent

Description
Type
Length of Fiber Run
Number of Intersections
Percentage of Underpavement Conduit
Value

U
2,000.00
3
10.00

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount

Description: US 129 portion of interchange (includes sidewalks) and including all signals for both US 129 and the ramps. Also includes cost for retention basins.

EARTHWORK COMPONENT	
User Input Data	Value
Description	$0.00 / 0.00$
Standard Clearing and Grubbing Limits L/R	3.00
Incidental Clearing and Grubbing Area	
	1
Alignment Number	0.212
Distance	102.00
Top of Structural Course For Begin Section	102.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	100.00
Horizontal Elevation For End Section	6 to $1 / 6$ to 1
Existing Front Slope L/R	$5.00 \% / 5.00 \%$
Existing Median Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Existing Outside Shoulder Cross Slope L/R	6 to $1 / 6$ to 1
Front Slope L/R	$5.00 \% / 5.00 \%$
Median Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Outside Shoulder Cross Slope L/R	$2.00 \% / 2.00 \%$

Pay Items

Description
CLEARING \& GRUBBING
REGULAR EXCAVATION
BORROW EXCAVATION, TRUCK MEASURE

Quantity Unit	Unit Price	Extended Amount
3.00 AC	$\$ 16,509.96$	$\$ 49,529.88$
657.52 CY	$\$ 13.17$	$\$ 8,659.54$
364.00 CY	$\$ 22.39$	$\$ 8,149.96$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
110-1-1	CLEARING \& GRUBBING	2.27 AC	\$16,509.96	\$37,477.61
	Comment: clearing for ponds in 4 quadrants of the interchange.			
110-4-10	REMOVAL OF EXIST CONC	784.00 SY	\$25.59	\$20,062.56
	Comment: 620 SY of concrete removal for sloped concrete under bridge. 164 SY for concrete removal of barrier wall protecting bridge piers.			
	REGULAR EXCAVATION	380.00 CY	\$13.17	\$5,004.60

Comment: Excavation to remove soil from underneath concrete slopes beneath bridge. Calculated using cross sections from 3D model (5 ' gravity wall, gutter behind wall, tying up to existing slope at 1:1.5)

ROADWAY COMPONENT

User Input Data

Description

Value

Number of Lanes
Existing Roadway Pavement Width L/R 29.00 / 29.00
Structural Spread Rate 165

Friction Course Spread Rate	165
Widened Outside Pavement Width L/R	$9.63 / 8.82$
Widened Inside Pavement Width L/R	$0.85 / 4.14$
Widened Structural Spread Rate	165
Widened Friction Course Spread Rate	165

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
160-4	TYPE B STABILIZATION	4,200.82 SY	\$7.81	\$32,808.40
285-709	OPTIONAL BASE,BASE GROUP 09	3,080.94 SY	\$30.49	\$93,937.86
327-70-5	MILLING EXIST ASPH PAVT, 2" AVG DEPTH	7,217.06 SY	\$2.55	\$18,403.50
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	595.41 TN	\$126.68	\$75,426.54
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	240.63 TN	\$126.68	\$30,483.01
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	595.41 TN	\$138.67	\$82,565.50
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	240.63 TN	\$138.67	\$33,368.16

X-Items			
Pay item	Description Quantity Unit	Unit Price	Extended Amount
400-0-11	CONC CLASS NS, GRAVITY WALL 170.00 CY	\$700.27	\$119,045.90
	Comment: 5' tall gravity wall (+ 1 into ground) 200' long on both sides of the road under the bridge.		
524-1-1	CONCRETE DITCH PAVT, NR, 3" 335.00 SY	\$128.79	\$43,144.65
	Comment: Slope pavement for gutter behind 5 ' gravity wall under bridge and for tying up to existing slope under bridge at 1:1.5. Measured from 3D model.		

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	Y
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	1
Solid Stripe No. of Stripes	4
Skip Stripe No. of Paint Applications	1
Skip Stripe No. of Stripes	4

Pay Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	143.00 EA	\$5.16	\$737.88
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	0.85 GM	\$1,098.02	\$933.32
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"	0.85 GM	\$589.46	\$501.04
711-15-201	THERMOPLASTIC, STDOP,YELLOW, SOLID, 6"	0.85 GM	\$5,632.60	\$4,787.71
711-16-101	THERMOPLASTIC, STD-OTH, WHITE, SOLID, $6^{\prime \prime}$	0.85 GM	\$5,062.19	\$4,302.86
711-16-131	THERMOPLASTIC, STD-OTH, WHITE, SKIP, 6"	0.85 GM	\$1,514.05	\$1,286.94

SHOULDER COMPONENT

User Input Data

Description	Value
Existing Total Outside Shoulder Width L/R	$15.00 / 15.00$
New Total Outside Shoulder Width L/R	$13.93 / 13.93$
Total Outside Shoulder Perf. Turf Width L/R	$5.93 / 5.93$
Sidewalk Width L/R	$5.75 / 5.75$

Pay Items				
Pay item	Description $520-1-10$	CONCRETE CURB \& GUTTER,	Quantity Unit TYPE F	$1,119.89$ LF

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$104-10-3$	SEDIMENT BARRIER	$2,239.78 \mathrm{LF}$	$\$ 2.25$	$\$ 5,039.50$
$104-11$	FLOATING TURBIDITY BARRIER	21.21 LF	$\$ 13.74$	$\$ 291.43$
$104-12$	STAKED TURBIDITY BARRIER-	21.21 LF	$\$ 6.96$	$\$ 147.62$
	NYL REINF PVC			
$104-15$	SOIL TRACKING PREVENTION	1.00 EA	$\$ 2,968.67$	$\$ 2,968.67$
	DEVICE			
$104-18$	INLET PROTECTION SYSTEM	10.00 EA	$\$ 116.57$	$\$ 1,165.70$
$107-1$	LITTER REMOVAL	1.85 AC	$\$ 22.61$	$\$ 41.83$
$107-2$	MOWING	1.85 AC	$\$ 58.81$	$\$ 108.80$
				$\$ 150,433.09$

MEDIAN COMPONENT

User Input Data

Description

Total Median Widt

Pay Items

Pay item	Description	Quantity Unit	Unit Price Extended Amount	
$570-1-1$	PERFORMANCE TURF	335.97 SY	$\$ 0.49$	$\$ 164.63$

X-Items

| Pay item | Description | Quantity Unit | Unit Price | Extended Amount |
| :--- | :--- | :---: | ---: | ---: | ---: |
| $520-1-7$ | CONCRETE CURB \& GUTTER, | 475.00 LF | $\$ 20.74$ | $\$ 9,851.50$ |
| | TYPE E | | | |
| | Comment: Median curb for part of north section. | | | |
| $520-70$ | CONCRETE TRAFFIC | 993.00 SY | $\$ 127.94$ | $\$ 127,044.42$ |

DRAINAGE COMPONENT

Pay Items

Pay item
425-1-351
425-1-451
430-175-124
430-175-136

570-1-1

Description
INLETS, CURB, TYPE P-5, < 10^{\prime}
INLETS, CURB, TYPE J-5, <10'
PIPE CULV, OPT MATL, ROUND, 24"S/CD
PIPE CULV, OPT MATL, ROUND, 36"S/CD
PERFORMANCE TURF

Quantity Unit Unit Price Extended Amount
8.00 EA $\$ 5,779.41 \quad \$ 46,235.28$
3.00 EA $\quad \$ 7,658.15 \quad \$ 22,974.45$ 120.00 LF $\$ 95.93 \quad \$ 11,511.60$ 40.00 LF $\quad \$ 142.34 \quad \$ 5,693.60$ 100.00 SY $\quad \$ 0.49$

Retention Basin 1

Description	Value
Size	1 AC
Multiplier	1
Depth	2.00
Description	Retention basins in all four
	quadrants of the interchange.

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-1-1$	CLEARING \& GRUBBING	1.91 AC	$\$ 16,509.96$	$\$ 31,534.02$
$120-1$	REGULAR EXCAVATION	$5,770.00 \mathrm{CY}$	$\$ 13.17$	$\$ 75,990.90$
$570-1-1$	PERFORMANCE TURF	$9,244.00 \mathrm{SY}$	$\$ 0.49$	$\$ 4,529.56$

X-Items

Pay item	Description
INLETS, DT BOT, TYPE D, MODIFY	
0-549	PIPE CULV, OPT MATL, ROUND,
	$24 " S / C D$
PIPE CULV, OPT MATL, ROUND,	
	$36 " S / C D$

Quantity Unit	Unit Price	Extended Amount
4.00 EA	$\$ 5,973.84$	$\$ 23,895.36$
400.00 LF	$\$ 95.93$	$\$ 38,372.00$
400.00 LF	$\$ 142.34$	$\$ 56,936.00$
4.00 EA	$\$ 3,486.45$	$\$ 13,945.80$

Drainage Component Total
\$331,667.57

SIGNING COMPONENT

Pay Items

Pay item
700-1-11

700-1-12 SINGLE POST SIGN, F\&I GM, 12-20
SF
700-1-60 SINGLE POST SIGN, REMOVE
700-2-60

X-Items
Pay item Description

Quantity Unit	Unit Price	Extended Amount
25.00 AS	$\$ 387.62$	$\$ 9,690.50$
3.00 AS	$\$ 954.13$	$\$ 2,862.39$
7.00 AS	$\$ 11.93$	$\$ 83.51$
3.00 AS	$\$ 119.26$	$\$ 357.78$

Quantity Unit Unit Price Extended Amount

$700-1-14$	SINGLE POST SIGN, F\&I GM, 31+	4.00 AS	$\$ 1,887.21$	$\$ 7,548.84$
$700-2-12$	SF	MULTI- POST SIGN, F\&I GM, 12-20	4.00 AS	$\$ 3,866.67$
$700-2-14$	SF			$\$ 15,466.68$
$700-4-140$	MULTI- POST SIGN, F\&I GM, 31-50	1.00 AS	$\$ 4,784.83$	$\$ 4,784.83$
	SF STATIC SIGN STR, F\&I, O BR	2.00 EA	$\$ 11,563.50$	$\$ 23,127.00$
	MOUNT			$\$ 63,921.53$

Signalization 1

Description

Type Multiplier Description

SIGNALIZATIONS COMPONENT

Value
4 Lane Mast Arm
1

Value

Mast arms for I-10 at US 129 intersections.

Pay Items

Pay item
630-2-11
630-2-12

632-7-1

635-2-11
639-1-112

639-2-1
641-2-11

649-21-6 STEEL MAST ARM ASSEMBLY, F\&I, 50'

649-21-8 STEEL MAST ARM ASSEMBLY, F\&I, 50'- 40'
649-21-13 STEEL MAST ARM ASSEMBLY, F\&I, 60'-50
650-1-14

653-1-11 PEDESTRIAN SIGNAL, F\&I LED COUNT, 1 WAY
660-2-106 LOOP ASSEMBLY, F\&I, TYPE F
665-1-12 PEDESTRIAN DETECTOR, F\&I, ACCESSIBLE

670-5-111 TRAF CNTL ASSEM, F\&I, NEMA, 1 PREEMPT
700-5-22 INTERNAL ILLUM SIGN, F\&I OM, 12-18 SF

Quantity Unit	Unit Price	Extended Amount
1,500.00 LF	$\$ 5.04$	$\$ 7,560.00$
500.00 LF	$\$ 22.06$	$\$ 11,030.00$

6.00 PI	$\$ 5,366.96$	$\$ 32,201.76$
30.00 EA	$\$ 653.51$	$\$ 19,605.30$
2.00 AS	$\$ 2,870.71$	$\$ 5,741.42$
60.00 LF	$\$ 5.42$	$\$ 325.20$

16.00 EA $\$ 1,438.45 \quad \$ 23,015.20$
2.00 EA $\$ 45,000.00 \quad \$ 90,000.00$
1.00 EA $\$ 59,731.28 \quad \$ 59,731.28$
1.00 EA $\$ 53,977.39 \quad \$ 53,977.39$
18.00 AS \$1,037.87 \$18,681.66

16.00 AS	$\$ 638.47$	$\$ 10,215.52$
18.00 AS	$\$ 1,311.92$	$\$ 23,614.56$
16.00 EA	$\$ 1,501.89$	$\$ 24,030.24$
2.00 AS	$\$ 32,000.00$	$\$ 64,000.00$
8.00 EA	$\$ 4,260.09$	$\$ 34,080.72$

$\begin{array}{crr}\text { Quantity Unit } & \text { Unit Price } & \text { Extended Amount } \\ 2.00 \mathrm{AS} & \$ 1,689.37 & \$ 3,378.74\end{array}$

Description
VEH TRAF SIGNAL,F\&I ALUMINUM, 5 S CL 1 W

MISCELLANEOUS COMPONENT				
X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
400-8-5	CONC CLASS V, SUBSTRUCTURE	40.00 CY	\$1,000.00	\$40,000.00
	Comment: Concrete to harden/strengthen piers to 600 kip impact resistance (assuming 1 ft added radius around piers, 15 ft tall, for 6 piers).			
	Miscellaneous Component Total			\$40,000.00
Sequence 4 Total				\$1,874,889.15

Sequence: 5 WDR - Widen/Resurface, Divided, Rural	Net Length:	0.057 MI
Description: I-10 WB on ramps reconstruction.	300 LF	

EARTHWORK COMPONENT

User Input Data

Description	Value
Standard Clearing and Grubbing Limits L/R	$0.00 / 0.00$
Incidental Clearing and Grubbing Area	0.55
Alignment Number	1
Distance	0.057
Top of Structural Course For Begin Section	100.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	100.00
Horizontal Elevation For End Section	100.00
Existing Front Slope L/R	6 to $1 / 6$ to 1
Existing Median Slope L/R	6 to $1 / 6$ to 1
Existing Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Existing Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Front Slope L/R	6 to $1 / 6$ to 1
Median Slope L/R	6 to $1 / 6$ to 1
Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Roadway Cross Slope L/R	$2.00 \% / 2.00 \%$

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-1-1$	CLEARING \& GRUBBING	0.55 AC	$\$ 16,509.96$	$\$ 9,080.48$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
110-4-10	REMOVAL OF EXIST CONC	375.00 SY	$\$ 25.59$	$\$ 9,596.25$
$120-6$	EMBANKMENT	406.00 CY	$\$ 21.84$	$\$ 8,867.04$
	Comment: From 3D model			
	Earthwork Component Total			$\$ 27,543.77$

ROADWAY COMPONENT

User Input Data

Description

Value
Number of Lanes
Existing Roadway Pavement Width L/R
Structural Spread Rate $0.00 / 19.11$

Friction Course Spread Rate 165

Widened Outside Pavement Width L/R
0.00 / 7.91

Widened Inside Pavement Width L/R
0.00 / 0.00

Widened Structural Spread Rate 165
Widened Friction Course Spread Rate 165

Pay Items

160-4	TYPE B STABILIZATION	930.04 SY	\$7.81	\$7,263.61
285-709	OPTIONAL BASE,BASE GROUP 09	274.58 SY	\$30.49	\$8,371.94
327-70-5	MILLING EXIST ASPH PAVT, 2" AVG DEPTH	636.80 SY	\$2.55	\$1,623.84
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	52.54 TN	\$126.68	\$6,655.77
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	21.75 TN	\$126.68	\$2,755.29
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	52.54 TN	\$138.67	\$7,285.72
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	21.75 TN	\$138.67	\$3,016.07

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	Y
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	1
Solid Stripe No. of Stripes	1
Skip Stripe No. of Paint Applications	1
Skip Stripe No. of Stripes	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
706 -1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	8.00 EA	$\$ 5.16$	$\$ 41.28$
$710-11-101$	PAINTED PAVT	0.06 GM	$\$ 1,098.02$	$\$ 65.88$
$711-15-101$	MARK,STD,WHITE,SOLID,6"	0.06 GM	$\$ 5,632.60$	$\$ 337.96$
$711-15-201$	THERMOPLASTIC, STD-OP,	0.06 GM	$\$ 5,632.60$	$\$ 337.96$
	WHITE, SOLID, 6"			$\$ 37,755.32$

SHOULDER COMPONENT

User Input Data

Description	Value
Existing Total Outside Shoulder Width L/R	$10.00 / 10.00$
New Total Outside Shoulder Width L/R	$10.00 / 10.00$
Total Outside Shoulder Perf. Turf Width L/R	$8.00 / 5.00$
Existing Paved Outside Shoulder Width L/R	$2.00 / 5.00$
New Paved Outside Shoulder Width L/R	$2.00 / 5.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips $̈$ İ½No. of Sides	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$285-704$	OPTIONAL BASE,BASE GROUP 04	255.25 SY	$\$ 19.57$	$\$ 4,995.24$
$327-70-1$	MILLING EXIST ASPH PAVT, 1"	233.26 SY	$\$ 1.43$	$\$ 333.56$

$334-1-13$	SUPERPAVE ASPHALTIC CONC, 12.83 TN	$\$ 98.15$	$\$ 1,259.26$	
$337-7-25$	TRAFFIC C			
	ASPH CONC FC,INC	9.33 TN	$\$ 131.80$	$\$ 1,229.69$
$570-1-1$	BIT,FC-5,PG76-22	433.19 SY	$\$ 0.49$	$\$ 212.26$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-10$	CONCRETE CURB \& GUTTER,	200.00 LF	$\$ 32.02$	$\$ 6,404.00$

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
104-10-3	SEDIMENT BARRIER	689.78 LF	$\$ 2.25$	$\$ 1,552.00$
				$\$ 15,986.02$

User Input Data	Value
Description	7.90
Total Median Width	7.90
Performance Turf Width	$0.00 / 0.00$
New Total Median Shoulder Width L/R	$0.00 / 0.00$
New Paved Median Shoulder Width L/R	$0.00 / 0.00$
Existing Total Median Shoulder Width L/R	$0.00 / 0.00$
Existing Paved Median Shoulder Width L/R	110
Structural Spread Rate	80
Friction Course Spread Rate	T
Total Width (T)/ 8" Overlap (O)	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$570-1-1$	PERFORMANCE TURF	263.25 SY	$\$ 0.49$	$\$ 128.99$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-7$	CONCRETE CURB \& GUTTER,	300.00 LF	$\$ 20.74$	$\$ 6,222.00$
	TYPE E			
	Median Component Total			$\$ 6,350.99$

DRAINAGE COMPONENT

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$425-1-361$	INLETS, CURB, TYPE P-6, <10'	1.00 EA	$\$ 5,469.37$	$\$ 5,469.37$
$425-1-521$	INLETS, DT BOT, TYPE C, <10'	1.00 EA	$\$ 2,510.72$	$\$ 2,510.72$

430-174-118	PIPE CULV, OPT MATL,	152.00 LF	$\$ 93.27$
	ROUND,18"SD	$\$ 14,177.04$	
	Drainage Component Total	$\$ 22,157.13$	

Pay Items

| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| :---: | :--- | :---: | ---: | ---: | ---: |
| $700-1-11$ | SINGLE POST SIGN, F\&I GM, <12 | 8.00 AS | $\$ 387.62$ | $\$ 3,100.96$ |
| | SF | | | |
| X-Items | | | | |
| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| $700-1-60$ | SINGLE POST SIGN, REMOVE | 1.00 AS | $\$ 11.93$ | $\$ 11.93$ |
| | | | | $\$ 3,112.89$ |

Sequence 5 Total $\quad \$ 112,906.12$

| Sequence: 6 WDR - Widen/Resurface, Divided, Rural | Net Length:0.081 MI
 Description: I-10 WB off ramp reconstruction. 425 LF |
| :--- | ---: | :--- |

EARTHWORK COMPONENT

User Input Data

Description	Value
Standard Clearing and Grubbing Limits L/R	$0.00 / 0.00$
Incidental Clearing and Grubbing Area	0.90
Alignment Number	1
Distance	0.080
Top of Structural Course For Begin Section	100.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	100.00
Horizontal Elevation For End Section	100.00
Existing Front Slope L/R	6 to $1 / 6$ to 1
Existing Median Slope L/R	6 to $1 / 6$ to 1
Existing Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Existing Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Front Slope L/R	6 to $1 / 6$ to 1
Median Slope L/R	6 to $1 / 6$ to 1
Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Roadway Cross Slope L/R	$2.00 \% / 2.00 \%$

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-1-1$	CLEARING \& GRUBBING	0.90 AC	$\$ 16,509.96$	$\$ 14,858.96$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-4-10$	REMOVAL OF EXIST CONC	400.00 SY	$\$ 25.59$	$\$ 10,236.00$
$120-6$	EMBANKMENT	320.00 CY	$\$ 21.84$	$\$ 6,988.80$
	Comment: From 3D model			
				$\$ 32,083.76$

ROADWAY COMPONENT

User Input Data

Description

Value
Number of Lanes
Existing Roadway Pavement Width L/R $0.00 / 21.44$
Structural Spread Rate 165
Friction Course Spread Rate 165
Widened Outside Pavement Width L/R 0.00 / 19.31
Widened Inside Pavement Width L/R $0.00 / 0.00$
Widened Structural Spread Rate 165
Widened Friction Course Spread Rate 165

Pay Items

160-4	TYPE B STABILIZATION	1,832.87 SY	\$7.81	\$14,314.71
285-709	OPTIONAL BASE,BASE GROUP 09	927.53 SY	\$30.49	\$28,280.39
327-70-5	MILLING EXIST ASPH PAVT, 2" AVG DEPTH	1,012.54 SY	\$2.55	\$2,581.98
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	83.53 TN	\$126.68	\$10,581.58
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	75.24 TN	\$126.68	\$9,531.40
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	83.53 TN	\$138.67	\$11,583.11
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	75.24 TN	\$138.67	\$10,433.53

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$536-73$	GUARDRAIL REMOVAL	330.00 LF	$\$ 4.44$	$\$ 1,465.20$
$536-85-20$	GUARDRAIL END TREAT-	1.00 EA	$\$ 1,325.16$	$\$ 1,325.16$
	TRAILING ANCHORAGE			
$536-85-24$	GUARDRAIL END TREATMENT-	1.00 EA	$\$ 3,577.97$	$\$ 3,577.97$

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	Y
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	1
Solid Stripe No. of Stripes	1
Skip Stripe No. of Paint Applications	1
Skip Stripe No. of Stripes	1

Pay Items

Pay item	Description
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"
711-15-101	THERMOPLASTIC, STD-OP, WHITE, SOLID, $6 "$
711-15-131	THERMOPLASTIC, STD-OP, WHITE, SKIP, 6"
711-15-201	THERMOPLASTIC, STDOP,YELLOW, SOLID, 6"

Peripherals Subcomponent

Description	Value
Off Road Bike Path(s)	0
Off Road Bike Path Width L/R	$0.00 / 0.00$
Bike Path Structural Spread Rate	0
Noise Barrier Wall Length	0.00
Noise Barrier Wall Begin Height	0.00
Noise Barrier Wall End Height	0.00

Pay Items

| Pay item | Description | Quantity Unit | Unit Price |
| :--- | :--- | ---: | ---: | \(\left.\begin{array}{r}Extended

Amount\end{array}\right)\)

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$285-704$	OPTIONAL BASE,BASE GROUP 04	715.96 SY	$\$ 19.57$	$\$ 14,011.34$
$327-70-1$	MILLING EXIST ASPH PAVT, 1"	236.13 SY	$\$ 1.43$	$\$ 337.67$
$334-1-13$	AVG DEPTH			
	SUPERPAVE ASPHALTIC CONC,	37.66 TN	$\$ 98.15$	$\$ 3,696.33$
$337-7-25$	TRAFFIC C			$\$ 3.39 \mathrm{TN}$
$570-1-1$	ASPH CONC FC,INC	$\$ 131.80$	$\$ 3,610.00$	
	BIT,FC-5,PG76-22	236.13 SY	$\$ 0.49$	$\$ 115.70$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-10$	CONCRETE CURB \& GUTTER,	160.00 LF	$\$ 32.02$	$\$ 5,123.20$

Erosion Control

Pay Items

| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| :--- | :--- | :---: | ---: | ---: | ---: |
| 104-10-3 | SEDIMENT BARRIER | 977.59 LF | $\$ 2.25$ | $\$ 2,199.58$ |
| | | | | |
| | Shoulder Component Total | | | $\$ 29,093.82$ |

MEDIAN COMPONENT

User Input Data
Description
Value

Total Median Width	2.59
Performance Turf Width	2.59
New Total Median Shoulder Width L/R	$0.00 / 0.00$
New Paved Median Shoulder Width L/R	$0.00 / 0.00$
Existing Total Median Shoulder Width L/R	$0.00 / 0.00$
Existing Paved Median Shoulder Width L/R	$0.00 / 0.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T)/ 8" Overlap (O)	T
Rumble Strips 1 İ½No. of Sides	0

Pay Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$570-1-1$	PERFORMANCE TURF	122.32 SY	$\$ 0.49$	$\$ 59.94$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-7$	CONCRETE CURB \& GUTTER,	220.00 LF	$\$ 20.74$	$\$ 4,562.80$
	TYPE E			
				$\$ 4,622.74$

DRAINAGE COMPONENT

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$425-1-361$	INLETS, CURB, TYPE P-6, <10'	1.00 EA	$\$ 5,469.37$	$\$ 5,469.37$
$425-1-521$	INLETS, DT BOT, TYPE C, <10'	1.00 EA	$\$ 2,510.72$	$\$ 2,510.72$
$430-174-118$	PIPE CULV, OPT MATL,	152.00 LF	$\$ 93.27$	$\$ 14,177.04$
	ROUND,18"SD			
				$\$ 22,157.13$

SIGNING COMPONENT

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12	10.00 AS	$\$ 387.62$	$\$ 3,876.20$
$700-1-60$	SF	SINGLE POST SIGN, REMOVE		
$700-2-60$	MULTI- POST SIGN, REMOVE	7.00 AS	$\$ 11.93$	$\$ 83.51$
		3.00 AS	$\$ 119.26$	$\$ 357.78$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$700-1-22$	SINGLE POST SIGN, F\&I BARR MT,	2.00 AS	$\$ 2,697.82$	$\$ 5,395.64$
$700-2-14$	12-20 SF			
$700-2-15$	MULTI- POST SIGN, F\&I GM, 31-50	2.00 AS	$\$ 4,784.83$	$\$ 9,569.66$
$700-2-50$	SF			
	MULTI- POST SIGN, F\&I GM, 51-	1.00 AS	$\$ 6,974.43$	$\$ 6,974.43$
	MULTI- POST SIGN, RELOCATE	2.00 AS	$\$ 3,407.13$	$\$ 6,814.26$

700-6-21 HIGHLIGHTED SIGN, F\&I GM- 2.00 AS \$6,041.84 \$12,083.68 SOLAR, <12 SF

Signing Component Total

Sequence: 8 WDR - Widen/Resurface, Divided, Rural	Net Length:	0.057 MI
Description: I-10 EB on ramps reconstruction.		

EARTHWORK COMPONENT

User Input Data

Description	Value
Standard Clearing and Grubbing Limits L/R	$0.00 / 0.00$
Incidental Clearing and Grubbing Area	0.70
Alignment Number	1
Distance	0.057
Top of Structural Course For Begin Section	100.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	100.00
Horizontal Elevation For End Section	100.00
Existing Front Slope L/R	6 to $1 / 6$ to 1
Existing Median Slope L/R	6 to $1 / 6$ to 1
Existing Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Existing Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Front Slope L/R	6 to $1 / 6$ to 1
Median Slope L/R	6 to $1 / 6$ to 1
Median Shoulder Cross Slope L/R	$5.00 \% / 5.00 \%$
Outside Shoulder Cross Slope L/R	$6.00 \% / 6.00 \%$
Roadway Cross Slope L/R	$2.00 \% / 2.00 \%$

Pay Items

| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| ---: | :--- | ---: | ---: | ---: | ---: |
| $110-1-1$ | CLEARING \& GRUBBING | 0.70 AC | $\$ 16,509.96$ | $\$ 11,556.97$ |

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-4-10$	REMOVAL OF EXIST CONC	300.00 SY	$\$ 25.59$	$\$ 7,677.00$
$120-1$	REGULAR EXCAVATION	36.00 CY	$\$ 13.17$	$\$ 474.12$
	Comment: From 3D model			
$120-6$	EMBANKMENT	895.00 CY	$\$ 21.84$	$\$ 19,546.80$
	Comment: From 3D model			
				$\$ 39,254.89$

ROADWAY COMPONENT

User Input Data

Description

Value
Number of Lanes
2
Existing Roadway Pavement Width L/R 0.00 / 29.88
Structural Spread Rate 165
Friction Course Spread Rate 165
Widened Outside Pavement Width L/R 0.00 / 8.25
Widened Inside Pavement Width L/R $0.00 / 0.00$
Widened Structural Spread Rate 165
Widened Friction Course Spread Rate 165

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
160-4	TYPE B STABILIZATION	941.37 SY	\$7.81	\$7,352.10
285-709	OPTIONAL BASE,BASE GROUP 09	285.91 SY	\$30.49	\$8,717.40
327-70-5	MILLING EXIST ASPH PAVT, 2" AVG DEPTH	995.68 SY	\$2.55	\$2,538.98
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	82.14 TN	\$126.68	\$10,405.50
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	22.68 TN	\$126.68	\$2,873.10
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	82.14 TN	\$138.67	\$11,390.35
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	22.68 TN	\$138.67	\$3,145.04

Pavement Marking Subcomponent

Description

Include Thermo/Tape/Other
Pavement Type
Solid Stripe No. of Paint Applications 1
Solid Stripe No. of Stripes 1
Skip Stripe No. of Paint Applications 1
Skip Stripe No. of Stripes

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF	8.00 EA	\$5.16	\$41.28
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"	0.06 GM	\$1,098.02	\$65.88
711-15-101	THERMOPLASTIC, STD-OP, WHITE, SOLID, $6 "$	0.06 GM	\$5,632.60	\$337.96
711-15-201	THERMOPLASTIC, STDOP,YELLOW, SOLID, 6"	0.06 GM	\$5,632.60	\$337.96
	Roadway Component Total			\$47,205.55

SHOULDER COMPONENT

User Input Data

Description	Value
Existing Total Outside Shoulder Width L/R	$10.00 / 10.00$
New Total Outside Shoulder Width L/R	$10.00 / 10.00$
Total Outside Shoulder Perf. Turf Width L/R	$10.00 / 5.00$
Existing Paved Outside Shoulder Width L/R	$0.00 / 5.00$
New Paved Outside Shoulder Width L/R	$0.00 / 5.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips Ï¿½No. of Sides	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$285-704$	OPTIONAL BASE,BASE GROUP 04	177.61 SY	$\$ 19.57$	$\$ 3,475.83$

327-70-1	MILLING EXIST ASPH PAVT, $1^{\prime \prime}$ AVG DEPTH	166.61 SY	\$1.43	\$238.25
334-1-13	SUPERPAVE ASPHALTIC CONC, TRAFFIC C	9.16 TN	\$98.15	\$899.05
337-7-25	ASPH CONC FC,INC BIT,FC-5,PG76-22	6.66 TN	\$131.80	\$877.79
570-1-1	PERFORMANCE TURF	499.84 SY	\$0.49	\$244.92

X-Items

| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| :--- | :--- | :---: | ---: | ---: | ---: |
| $520-1-10$ | CONCRETE CURB \& GUTTER, | 400.00 LF | $\$ 32.02$ | $\$ 12,808.00$ |
| | TYPE F | | | |
| Erosion Control | | | | |
| Pay Items | | | | |
| Pay item | Description | Quantity Unit | Unit Price | Extended
 Amount |
| $104-10-3$ | SEDIMENT BARRIER | 689.78 LF | $\$ 2.25$ | $\$ 1,552.00$ |
| | | | | $\$ 20,095.85$ |

MEDIAN COMPONENT	
User Input Data	
Description	Value
Total Median Width	9.09
Performance Turf Width	9.09
New Total Median Shoulder Width L/R	$0.00 / 0.00$
New Paved Median Shoulder Width L/R	$0.00 / 0.00$
Existing Total Median Shoulder Width L/R	$0.00 / 0.00$
Existing Paved Median Shoulder Width L/R	$0.00 / 0.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips ï $^{1 ⁄ 2}$ ²No. of Sides	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$570-1-1$	PERFORMANCE TURF	302.90 SY	$\$ 0.49$	$\$ 148.42$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-7$	CONCRETE CURB \& GUTTER,	300.00 LF	$\$ 20.74$	$\$ 6,222.00$
	TYPE E			
				$\$ 6,370.42$

X-Items

Pay item Description Quantity Unit Unit Price | Extended |
| ---: |
| Amount |

425-1-361	INLETS, CURB, TYPE P-6, <10'	1.00 EA	$\$ 5,469.37$	$\$ 5,469.37$
$425-1-521$	INLETS, DT BOT, TYPE C, <10'	1.00 EA	$\$ 2,510.72$	$\$ 2,510.72$
$430-174-118$	PIPE CULV, OPT MATL,	152.00 LF	$\$ 93.27$	$\$ 14,177.04$
	ROUND,18"SD			
				$\$ 22,157.13$

SIGNING COMPONENT				
Pay Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
700-1-11	SINGLE POST SIGN, F\&I GM, <12 SF	8.00 AS	\$387.62	\$3,100.96
700-1-60	SINGLE POST SIGN, REMOVE	5.00 AS	\$11.93	\$59.65
	Signing Component Total			\$3,160.61

Sequence: 9 WDR - Widen/Resurface, Divided, Rural	Net Length: $\begin{aligned} 0.085 \mathrm{M} \\ 450 \mathrm{LF}\end{aligned}$
Description: I-10 EB off ramp reconstruction.	
EARTHWORK COMPONENT	
User Input Data	
Description	Value
Standard Clearing and Grubbing Limits L/R	0.00 / 0.00
Incidental Clearing and Grubbing Area	1.00
Alignment Number	1
Distance	0.085
Top of Structural Course For Begin Section	100.00
Top of Structural Course For End Section	100.00
Horizontal Elevation For Begin Section	100.00
Horizontal Elevation For End Section	100.00
Existing Front Slope L/R	6 to $1 / 6$ to 1
Existing Median Slope L/R	6 to 1 / 6 to 1
Existing Median Shoulder Cross Slope L/R	5.00 \% / 5.00 \%
Existing Outside Shoulder Cross Slope L/R	6.00 \% / 6.00 \%
Front Slope L/R	6 to 1 / 6 to 1
Median Slope L/R	6 to $1 / 6$ to 1
Median Shoulder Cross Slope L/R	5.00 \% / 5.00 \%
Outside Shoulder Cross Slope L/R	6.00 \% / 6.00 \%
Roadway Cross Slope L/R	2.00 \% / 2.00 \%

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
110-1-1	CLEARING \& GRUBBING	1.00 AC	$\$ 16,509.96$	$\$ 16,509.96$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$110-4-10$	REMOVAL OF EXIST CONC	235.00 SY	$\$ 25.59$	$\$ 6,013.65$
$120-6$	EMBANKMENT	900.00 CY	$\$ 21.84$	$\$ 19,656.00$
	Comment: From 3D model			
	Earthwork Component Total			$\$ 42,179.61$

ROADWAY COMPONENT

User Input Data

Description

Value
Number of Lanes
Existing Roadway Pavement Width L/R $0.00 / 20.72$
Structural Spread Rate 165
Friction Course Spread Rate 165
Widened Outside Pavement Width L/R 0.00 / 19.09
Widened Inside Pavement Width L/R $0.00 / 1.30$
Widened Structural Spread Rate 165
Widened Friction Course Spread Rate 165

Pay Items

160-4	TYPE B STABILIZATION	1,718.95 SY	\$7.81	\$13,425.00
285-709	OPTIONAL BASE,BASE GROUP 09	1,052.16 SY	\$30.49	\$32,080.36
327-70-5	MILLING EXIST ASPH PAVT, 2" AVG DEPTH	1,035.67 SY	\$2.55	\$2,640.96
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	85.44 TN	\$126.68	\$10,823.54
334-1-53	SUPERPAVE ASPH CONC, TRAF C, PG76-22	84.08 TN	\$126.68	\$10,651.25
337-7-83	ASPH CONC FC,TRAFFIC C,FC12.5,PG 76-22	85.44 TN	\$138.67	\$11,847.96
337-7-83	ASPH CONC FC,TRAFFIC C,FC- 12.5,PG 76-22	84.08 TN	\$138.67	\$11,659.37

X-Items

Pay item	Description
$536-85-20$	GUARDRAIL END TREAT-
	TRAILING ANCHORAGE
$536-85-24$	GUARDRAIL END TREATMENT-
	PARA APP TERM

Pavement Marking Subcomponent

Description	Value
Include Thermo/Tape/Other	Y
Pavement Type	Asphalt
Solid Stripe No. of Paint Applications	1
Solid Stripe No. of Stripes	1
Skip Stripe No. of Paint Applications	1
Skip Stripe No. of Stripes	1

Pay Items

Pay item	Description
706-1-1	RAISED PAVMT MARK, TYPE B W/O FINAL SURF
710-11-101	PAINTED PAVT MARK,STD,WHITE,SOLID,6"
710-11-131	PAINTED PAVT MARK,STD,WHITE,SKIP, 6"
711-15-101	THERMOPLASTIC, STD-OP, WHITE, SOLID, 6"
711-15-131	THERMOPLASTIC, STD-OP, WHITE, SKIP, 6"
711-15-201	THERMOPLASTIC, STDOP,YELLOW, SOLID, 6"

Quantity Unit	Unit Price	Extended Amount
23.00 EA	$\$ 5.16$	$\$ 118.68$
0.09 GM	$\$ 1,098.02$	$\$ 98.82$
0.09 GM	$\$ 589.46$	$\$ 53.05$
0.09 GM	$\$ 5,632.60$	$\$ 506.93$
0.09 GM	$\$ 1,729.08$	$\$ 155.62$
0.09 GM	$\$ 5,632.60$	$\$ 506.93$

Peripherals Subcomponent

Description	Value
Off Road Bike Path(s)	0
Off Road Bike Path Width L/R	$0.00 / 0.00$
Bike Path Structural Spread Rate	0
Noise Barrier Wall Length	0.00
Noise Barrier Wall Begin Height	0.00
Noise Barrier Wall End Height	0.00

Pay Items

| Pay item | Description | Quantity Unit | Unit Price |
| :--- | :--- | ---: | ---: | \(\left.\begin{array}{r}Extended

Amount\end{array}\right)\)

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$285-704$	OPTIONAL BASE,BASE GROUP 04	732.77 SY	$\$ 19.57$	$\$ 14,340.31$
$327-70-1$	MILLING EXIST ASPH PAVT, 1"	349.89 SY	$\$ 1.43$	$\$ 500.34$
	AVG DEPTH			
$334-1-13$	SUPERPAVE ASPHALTIC CONC,	38.49 TN	$\$ 98.15$	$\$ 3,777.79$
	TRAFFIC C			
$337-7-25$	ASPH CONC FC,INC	27.99 TN	$\$ 131.80$	$\$ 3,689.08$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-10$	CONCRETE CURB \& GUTTER,	250.00 LF	$\$ 32.02$	$\$ 8,005.00$

Erosion Control

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
104-10-3	SEDIMENT BARRIER	977.59 LF	$\$ 2.25$	$\$ 2,199.58$
	Shoulder Component Total			$\$ 32,512.10$

MEDIAN COMPONENT

User Input Data

Description	Value
Total Median Width	3.79
Performance Turf Width	2.58
New Total Median Shoulder Width L/R	$0.00 / 0.00$

New Paved Median Shoulder Width L/R	$0.00 / 0.00$
Existing Total Median Shoulder Width L/R	$0.00 / 0.00$
Existing Paved Median Shoulder Width L/R	$0.00 / 0.00$
Structural Spread Rate	110
Friction Course Spread Rate	80
Total Width (T) / 8" Overlap (O)	T
Rumble Strips Ï¿½ $^{1 ⁄ 2}$ No. of Sides	0

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$570-1-1$	PERFORMANCE TURF	128.96 SY	$\$ 0.49$	$\$ 63.19$
X-Items				
Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$520-1-7$	CONCRETE CURB \& GUTTER,	160.00 LF	$\$ 20.74$	$\$ 3,318.40$
	TYPE E			
				$\$ 3,381.59$

DRAINAGE COMPONENT

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$425-1-361$	INLETS, CURB, TYPE P-6, <10'	1.00 EA	$\$ 5,469.37$	$\$ 5,469.37$
$425-1-521$	INLETS, DT BOT, TYPE C, <10'	1.00 EA	$\$ 2,510.72$	$\$ 2,510.72$
$430-174-118$	PIPE CULV, OPT MATL,	152.00 LF	$\$ 93.27$	$\$ 14,177.04$
$524-1-1$	ROUND,18"SD			
	CONCRETE DITCH PAVT, NR, 3"	215.00 SY	$\$ 128.79$	$\$ 27,689.85$
				$\$ 49,846.98$

SIGNING COMPONENT

Pay Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
$700-1-11$	SINGLE POST SIGN, F\&I GM, <12	10.00 AS	$\$ 387.62$	$\$ 3,876.20$
$700-1-60$	SF	SINGLE POST SIGN, REMOVE	7.00 AS	$\$ 11.93$
$700-2-60$	MULTI- POST SIGN, REMOVE	3.00 AS	$\$ 119.26$	$\$ 83.51$

X-Items

Pay item	Description	Quantity Unit	Unit Price	Extended Amount
700-1-12	SINGLE POST SIGN, F\&I GM, 12-20 SF	2.00 AS	\$954.13	\$1,908.26
700-2-14	MULTI- POST SIGN, F\&I GM, 31-50 SF	2.00 AS	\$4,784.83	\$9,569.66
700-2-15	MULTI- POST SIGN, F\&I GM, 51100 SF	1.00 AS	\$6,974.43	\$6,974.43
700-2-50	MULTI- POST SIGN, RELOCATE	2.00 AS	\$3,407.13	\$6,814.26
700-6-21	HIGHLIGHTED SIGN, F\&I GMSOLAR, <12 SF	2.00 AS	\$6,041.84	\$12,083.68

Date: 12/27/2021 3:09:39 PM

FDOT Long Range Estimating System - Production

R3: Project Details by Sequence Report

Project: 443239-1-52-01
Letting Date: 03/2025
Description: Conceptual estimate for ramp modifications at I-10 and US 129.

District: 02	County: 37 SUWANNEE	Market Area: 04	Units: English
Contract Class: 9	Lump Sum Project: N	Design/Build: Y	Project Length: 1.000 MI

Project Manager: Justin Garland

Version 9-P Project Grand Total

\$6,142,682.78
Description: 07/13/2021 VC Created by Osiris 9. US 129 widening to four lanes north of I-10. Carry 30' median typical section as far as possible and then taper down to two lanes. No bulbout U-turn.

Project Sequences Subtotal			\$4,180,693.69
102-1 Maintenance of Traffic	15.00 \%		\$627,104.05
101-1 Mobilization	10.00 \%		\$480,779.77
Project Sequences Total			\$5,288,577.51
Project Unknowns	15.00 \%		\$793,286.63
Design/Build	0.00 \%		\$0.00
Non-Bid Components:			
Pay item Description	Quantity Unit	Unit Price	Extended Amount
999-25 INITIAL CONTINGENCY AMOUNT (DO NOT BID)	LS	\$60,818.64	\$60,818.64
Project Non-Bid Subtotal			\$60,818.64
Version 9-P Project Grand Total			\$6,142,682.78

APPENDIXI

Build Alternative Conceptual Signing Plan

[^0]: ${ }^{1}$ Source: FDOT FTO

[^1]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

 Generated: 11/29/2021 11:40:01

[^2]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

[^3]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

[^4]: Copyright © 2021 University of Florida. All Rights Reserved.

[^5]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Freeways Version 7.5

[^6]: Copyright © 2021 University of Florida. All Rights Reserved.

[^7]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Freeways Version 7.5

[^8]: Copyright © 2021 University of Florida. All Rights Reserved.

[^9]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Freeways Version 7.5
 Basic 2020.xuf
 Generated: 11/29/2021 14:41:48

[^10]: Copyright © 2021 University of Florida. All Rights Reserved.

[^11]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Freeways Version 7.5

[^12]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS

[^13]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Tion Freeways Version 7.5
 Generated: 11/29/2021 14:44:08

[^14]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS Tion Freeways Version 7.5
 Generated: 11/29/2021 14:44:48

[^15]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

 Generated: 11/29/2021 14:35:41

[^16]: Copyright © 2021 University of Florida. All Rights Reserved.

[^17]: Copyright © 2021 University of Florida. All Rights Reserved.

[^18]: Copyright © 2021 University of Florida. All Rights Reserved.

[^19]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

[^20]: Copyright © 2021 University of Florida. All Rights Reserved.
 HCS TiN Freeways Version 7.5

[^21]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

[^22]: Copyright © 2021 University of Florida. All Rights Reserved.

 $$
 \text { HCS Tix Freeways Version } 7.5
 $$

[^23]: I-10 @ 129 Ultimate
 2025 PM

[^24]: I-10 @ 129 Ultimate
 2045 PM

[^25]: The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

